Skip to main content

Autophagy in Alzheimer’s disease: A Cleaning Service Out-of-order?

  • Chapter
  • First Online:
Toxicity and Autophagy in Neurodegenerative Disorders

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 9))

Abstract

Autophagy is a major route for the degradation of protein aggregates and damaged organelles. Alzheimer’s disease (AD) is mainly characterized by two distinctive neuropathological lesions, the accumulation of amyloid-β (Aβ) deposits and the presence of neurofibrillary tangles composed of hyperphosphorylated tau protein, which clearly indicates that the mechanisms of neuronal housekeeping and protein quality control are compromised in AD pathology. Indeed, the AD brain is marked by defects in the retrograde transport of autophagosomes and their maturation to lysosomes, which trigger a massive accumulation of autophagic vacuoles within large swellings along dystrophic and degenerating neurites. The combination of altered induction of the autophagic process and hampered lysosomal clearance of autophagic substrates creates conditions favorable for Aβ and tau accumulation in AD. Understanding the step(s) affected during the autophagic process in the different stages of AD is essential for the development of novel therapeutic approaches. In this chapter, the current knowledge pertaining to the cellular and molecular mechanisms involved in autophagy and its important role in the progression of AD pathology will be highlighted. The ongoing drug discovery strategies for therapeutic modulation of autophagy in the context of AD will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329–44.

    CAS  PubMed  Google Scholar 

  2. Pahnke J, Walker LC, Scheffler K, Krohn M. Alzheimer’s disease and blood-brain barrier function-Why have anti-beta-amyloid therapies failed to prevent dementia progression? Neurosci Biobehav Rev. 2009;33(7):1099–108.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Weller RO, Boche D, Nicoll JA. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 2009;118(1):87–102.

    CAS  PubMed  Google Scholar 

  4. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16(3):271–8 (discussion 8–84).

    CAS  PubMed  Google Scholar 

  5. Moreira PI, Santos RX, Zhu X, Lee HG, Smith MA, Casadesus G. Autophagy in Alzheimer’s disease. Expert Rev Neurother. 2010;10(7):1209–18.

    PubMed  Google Scholar 

  6. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010;13(7):805–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861–73.

    CAS  PubMed  Google Scholar 

  8. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Yamamoto A, Yue Z. Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci. 2014 (in press).

    Google Scholar 

  10. Santambrogio L, Cuervo AM. Chasing the elusive mammalian microautophagy. Autophagy. 2011;7(6):652–4.

    PubMed  Google Scholar 

  11. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22(8):407–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67.

    CAS  PubMed  Google Scholar 

  14. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102–9.

    CAS  PubMed  Google Scholar 

  16. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell. 2010;21(13):2257–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell. 2010;141(4):656–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010;12(8):747–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 2009;5(5):649–62.

    CAS  PubMed  Google Scholar 

  22. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. mTOR regulation of autophagy. FEBS Lett. 2010;584(7):1287–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20(6):355–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–50.

    CAS  PubMed  Google Scholar 

  26. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008;19(12):5360–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Sinha S, Levine B. The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene. 2008;27(Suppl 1):S137–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9(9):859–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 1998;273(51):33889–92.

    CAS  PubMed  Google Scholar 

  31. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298–302.

    CAS  PubMed  Google Scholar 

  32. Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Kominami E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates. J Biol Chem. 2004;279(35):36268–76.

    CAS  PubMed  Google Scholar 

  33. Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci. 2007;32(2):95–100.

    CAS  PubMed  Google Scholar 

  34. Gordon PB, Seglen PO. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988;151(1):40–7.

    CAS  PubMed  Google Scholar 

  35. Jahreiss L, Menzies FM, Rubinsztein DC. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic. 2008;9(4):574–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cells. Autophagy. 2005;1(1):1–10.

    CAS  PubMed  Google Scholar 

  37. Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 2010;21(6):1001–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Mousavi SA, Kjeken R, Berg TO, Seglen PO, Berg T, Brech A. Effects of inhibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. Biochim Biophys Acta. 2001;1510(1–2):243–57.

    CAS  PubMed  Google Scholar 

  39. Zhu XC, Yu JT, Jiang T, Tan L. Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol. 2013;48(3):702–14.

    CAS  PubMed  Google Scholar 

  40. Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2011;8(2):108–17.

    PubMed  Google Scholar 

  41. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15(3):1101–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.

    PubMed  Google Scholar 

  44. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008;28(27):6926–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol. 2006 May;65(5):423–32.

    PubMed Central  PubMed  Google Scholar 

  46. Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis. 2011;43(1):38–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.

    CAS  PubMed  Google Scholar 

  48. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441(7095):880–4.

    CAS  PubMed  Google Scholar 

  49. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176–84.

    CAS  PubMed  Google Scholar 

  50. Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J, Kominami E, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA. 2007;104(36):14489–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Hollenbeck PJ. Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport. J Cell Biol. 1993;121(2):305–15.

    CAS  PubMed  Google Scholar 

  52. Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem. 2010;285(5):3499–509.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol. 2009;187(1):71–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M. Reexamination of granulovacuolar degeneration. Acta Neuropathol. 1991;82(5):340–5.

    CAS  PubMed  Google Scholar 

  55. Cataldo AM, Hamilton DJ, Barnett JL, Paskevich PA, Nixon RA. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci. 1996;16(1):186–99.

    CAS  PubMed  Google Scholar 

  56. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005;171(1):87–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Ma JF, Huang Y, Chen SD, Halliday G. Immunohistochemical evidence for macroautophagy in neurones and endothelial cells in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2010;36(4):312–9.

    CAS  PubMed  Google Scholar 

  58. Tan CC, Yu JT, Tan MS, Jiang T, Zhu XC, Tan L. Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging. 2014;35(5):941–57.

    PubMed  Google Scholar 

  59. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest. 2008;118(6):2190–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis. 2011;43(1):68–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci USA. 2010;107(32):14164–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120(Pt 23):4081–91.

    CAS  PubMed  Google Scholar 

  63. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol. 2011;123(1):53–70.

    PubMed Central  PubMed  Google Scholar 

  64. Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, et al. Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995;14(3):671–80.

    CAS  PubMed  Google Scholar 

  65. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell. 2010;141(7):1146–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Placido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, et al. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implication’s for Alzheimer’s disease. Biochim Biophys Acta. 2014;1842:1444–53.

    CAS  PubMed  Google Scholar 

  67. Cataldo AM, Barnett JL, Pieroni C, Nixon RA. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci. 1997;17(16):6142–51.

    CAS  PubMed  Google Scholar 

  68. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012;2(5):a006270.

    PubMed Central  PubMed  Google Scholar 

  69. Mathews PM, Guerra CB, Jiang Y, Grbovic OM, Kao BH, Schmidt SD, et al. Alzheimer’s disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Abeta secretion: role for altered lysosomal hydrolase distribution in beta-amyloidogenesis. J Biol Chem. 2002;277(7):5299–307.

    CAS  PubMed  Google Scholar 

  70. Koo EH, Squazzo SL. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem. 1994;269(26):17386–9.

    CAS  PubMed  Google Scholar 

  71. Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, et al. Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int J Biochem Cell Biol. 2004;36(12):2531–40.

    CAS  PubMed  Google Scholar 

  72. Zhou F, van Laar T, Huang H, Zhang L. APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell. 2011;2(5):377–83.

    CAS  PubMed  Google Scholar 

  73. Agholme L, Hallbeck M, Benedikz E, Marcusson J, Kagedal K. Amyloid-beta secretion, generation, and lysosomal sequestration in response to proteasome inhibition: involvement of autophagy. J Alzheimers Dis. 2012;31(2):343–58.

    CAS  PubMed  Google Scholar 

  74. Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One. 2010;5(6):e11102.

    PubMed Central  PubMed  Google Scholar 

  75. Ohta K, Mizuno A, Ueda M, Li S, Suzuki Y, Hida Y, et al. Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy. 2010;6(3):345–52.

    CAS  PubMed  Google Scholar 

  76. Lunemann JD, Schmidt J, Schmid D, Barthel K, Wrede A, Dalakas MC, et al. Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann Neurol. 2007;61(5):476–83.

    CAS  PubMed  Google Scholar 

  77. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA. 2013;110(42):17071–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Tian Y, Bustos V, Flajolet M, Greengard P. A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 2011;25(6):1934–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain. 2011;134(Pt 1):258–77.

    PubMed Central  PubMed  Google Scholar 

  80. Pajak B, Songin M, Strosznajder JB, Orzechowski A, Gajkowska B. Ultrastructural evidence of amyloid beta-induced autophagy in PC12 cells. Folia Neuropathol. 2009;47(3):252–8.

    CAS  PubMed  Google Scholar 

  81. Hung SY, Huang WP, Liou HC, Fu WM. Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy. 2009;5(4):502–10.

    CAS  PubMed  Google Scholar 

  82. Cheung YT, Zhang NQ, Hung CH, Lai CS, Yu MS, So KF, et al. Temporal relationship of autophagy and apoptosis in neurons challenged by low molecular weight beta-amyloid peptide. J Cell Mol Med. 2010;15(2):244–57.

    Google Scholar 

  83. Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One. 2009;4(1):e4201.

    PubMed Central  PubMed  Google Scholar 

  84. Fonseca AC, Oliveira CR, Pereira CF, Cardoso SM. Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells. Biochim Biophys Acta. 2014;1843(6):1150–61.

    CAS  PubMed  Google Scholar 

  85. Silva DF, Esteves AR, Arduino DM, Oliveira CR, Cardoso SM. Amyloid-beta-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway. J Alzheimers Dis. 2011;26(3):565–81.

    CAS  PubMed  Google Scholar 

  86. Mizushima N. A(beta) generation in autophagic vacuoles. J Cell Biol. 2005;171(1):15–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70(3):410–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.

    CAS  PubMed  Google Scholar 

  89. Khurana V, Elson-Schwab I, Fulga TA, Sharp KA, Loewen CA, Mulkearns E, et al. Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet. 2010;6(7):e1001026.

    PubMed Central  PubMed  Google Scholar 

  90. Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Tsuchiya K, et al. Neurons containing Alz-50-immunoreactive granules around the cerebral infarction: evidence for the lysosomal degradation of altered tau in human brain? Neurosci Lett. 2000;284(3):187–9.

    CAS  PubMed  Google Scholar 

  91. Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S, et al. Alz-50/Gallyas-positive lysosome-like intraneuronal granules in Alzheimer’s disease and control brains. Neurosci Lett. 1998;258(2):113–6.

    CAS  PubMed  Google Scholar 

  92. Bi X, Zhou J, Lynch G. Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer’s disease. Exp Neurol. 1999;158(2):312–27.

    CAS  PubMed  Google Scholar 

  93. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet. 2009;18(21):4153–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci. 2008;27(5):1119–30.

    PubMed  Google Scholar 

  95. Bi X, Haque TS, Zhou J, Skillman AG, Lin B, Lee CE, et al. Novel cathepsin D inhibitors block the formation of hyperphosphorylated tau fragments in hippocampus. J Neurochem. 2000;74(4):1469–77.

    CAS  PubMed  Google Scholar 

  96. Bednarski E, Lynch G. Cytosolic proteolysis of tau by cathepsin D in hippocampus following suppression of cathepsins B and L. J Neurochem. 1996;67(5):1846–55.

    CAS  PubMed  Google Scholar 

  97. Caccamo A, Magri A, Medina DX, Wisely EV, Lopez-Aranda MF, Silva AJ, et al. mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell. 2013;12(3):370–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, et al. Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener. 2012;7:48.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Kruger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging. 2012;33(10):2291–305.

    PubMed  Google Scholar 

  100. Rodriguez-Martin T, Cuchillo-Ibanez I, Noble W, Nyenya F, Anderton BH, Hanger DP. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34(9):2146–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Li L, Zhang X, Le W. Autophagy dysfunction in Alzheimer’s disease. Neurodegener Dis. 2010;7(4):265–71.

    PubMed  Google Scholar 

  102. Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol. 2012;196(4):407–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy. 2012;8(5):858–60.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Correia SC, Santos RX, Cardoso S, Carvalho C, Candeias E, Duarte AI, et al. Alzheimer disease as a vascular disorder: where do mitochondria fit? Exp Gerontol. 2012;47(11):878–86.

    CAS  PubMed  Google Scholar 

  106. Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(Pt 9):2095–104.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. DuBoff B, Feany M, Gotz J. Why size matters—balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci. 2013;36(6):325–35.

    CAS  PubMed  Google Scholar 

  108. Wild P, Dikic I. Mitochondria get a Parkin’ ticket. Nat Cell Biol. 2010;12(2):104–6.

    CAS  PubMed  Google Scholar 

  109. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    CAS  PubMed  Google Scholar 

  110. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23.

    CAS  PubMed  Google Scholar 

  111. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, et al. Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol. 2007;66(6):525–32.

    CAS  PubMed  Google Scholar 

  112. Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, et al. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 2007;3(6):614–5.

    CAS  PubMed  Google Scholar 

  113. Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F. Monitoring of neuronal loss in the hippocampus of Abeta-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neuromolecular Med. 2014;16(1):175–90.

    CAS  PubMed  Google Scholar 

  114. Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet. 2011;20(11):2091–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Witte ME, Bol JG, Gerritsen WH, van der Valk P, Drukarch B, van Horssen J, et al. Parkinson’s disease-associated parkin colocalizes with Alzheimer’s disease and multiple sclerosis brain lesions. Neurobiol Dis. 2009;36(3):445–52.

    CAS  PubMed  Google Scholar 

  116. Amadoro G, Corsetti V, Florenzano F, Atlante A, Ciotti MT, Mongiardi MP, et al. AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neurobiol Dis. 2014;62:489–507.

    CAS  PubMed  Google Scholar 

  117. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem. 2010;285(17):13107–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One. 2011;6(9):e25416.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Liu Y, Su Y, Wang J, Sun S, Wang T, Qiao X, et al. Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochem Int. 2013;62(4):458–67.

    CAS  PubMed  Google Scholar 

  120. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S. Genetic reduction of Mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci. 2014;34(23):7988–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, et al. Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res. 2014;81:54–63.

    CAS  PubMed  Google Scholar 

  122. Jiang T, Yu JT, Zhu XC, Zhang QQ, Cao L, Wang HF, et al. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology. 2014 (in press).

    Google Scholar 

  123. Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF. Does lithium prevent Alzheimer’s disease? Drugs Aging. 2012;29(5):335–42.

    CAS  PubMed  Google Scholar 

  124. Li L, Zhang S, Zhang X, Li T, Tang Y, Liu H, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer’s disease. Curr Alzheimer Res. 2013;10(4):433–41.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sónia C. Correia has a post-doctoral fellowship from the Fundação para a Ciência e a Tecnologia (SFRH/BPD/84163/2012). George Perry is supported by a grant from the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia C. Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Correia, S., Moreira, P., Perry, G. (2015). Autophagy in Alzheimer’s disease: A Cleaning Service Out-of-order?. In: Fuentes, J. (eds) Toxicity and Autophagy in Neurodegenerative Disorders. Current Topics in Neurotoxicity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-13939-5_7

Download citation

Publish with us

Policies and ethics