Skip to main content

Cognitive MAC Designs: Background

  • Chapter
  • First Online:
Book cover Cognitive MAC Designs for OSA Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

This chapter first presents an overview on the MAC mechanisms currently deployed in IEEE 802.11 WLANs. The basic coexistence capabilities and recent enhancements of 802.11 MAC are discussed as enablers for realizing full cognitive MAC designs. Then, the second part of this chapter reviews various state-of-the-art cognitive MAC designs in OSA networks. We discuss and categorize the MAC design approaches in OSA networks, considering the need for network-wide coordination, the network structure of secondary users, and the transmission model of primary users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 535–547, Mar. 2000.

    Google Scholar 

  2. Y. Xiao, “IEEE 802.11e: A QoS provisioning at the MAC layer,” IEEE Wireless Commun., vol. 11, no. 3, pp. 72–79, Jun. 2004.

    Google Scholar 

  3. E. Charfi, L. Chaari, and L. Kamoun, “PHY/MAC enhancements and QoS mechanisms for very high throughput WLANs: A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 1714–1735, Fourth Quarter 2013.

    Google Scholar 

  4. IEEE Std 802.11e, “Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 8: Medium Access Control (MAC) Quality of Service enhancements,” IEEE Computer Society, 2005.

    Google Scholar 

  5. I. Tinnirello and S. Choi, “Efficiency analysis of burst transmissions with block ACK in contention-based 802.11e WLANs,” in Proc. IEEE Intl. Conf. Commun. (ICC), Seoul, Korea, May 2005.

    Google Scholar 

  6. P. K. Hazra and A. De, “Performance analysis of IEEE 802.11e EDCA with QoS enhancements through TXOP based frame-concatenation and block-acknowledgement,” Intl. J. Adv. Tech., vol. 2, no. 4, pp. 542–560, 2011.

    Google Scholar 

  7. Y. Xiao, “QoS Guarantee and Provisioning at the contention-based wireless MAC layer in the IEEE 802.11e wireless LANs,” IEEE Wireless Commun., vol. 13, no. 1, pp. 14–21, Feb. 2006.

    Article  Google Scholar 

  8. D. Skordoulis, Q. Ni, H. Chen, A. Stephens, C. Liu, and A. Jamalipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs,” IEEE Wireless Commun. Mag., vol. 15, no. 1, pp. 40–47, Feb. 2008.

    Google Scholar 

  9. Y. Lin and V. W. Wong, “WSN01-1: Frame aggregation and optimal frame size adaptation for IEEE 802.11n WLANs,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Francisco, CA, USA, Nov. 2006.

    Google Scholar 

  10. Y. Kim, S. Choi, K. Jang, and H. Hwang, “Throughput enhancement of IEEE 802.11 WLAN via frame aggregation,” in Proc. IEEE Veh. Tech. Conf. (VTC), Los Angeles, CA, USA, Sep. 2004.

    Google Scholar 

  11. O. Bejarano, E. W. Knightly, and M. Park, “IEEE 802.11 ac: From channelization to multi-user MIMO,” IEEE Commun. Mag., vol. 51, no. 10, pp. 84–90, Oct. 2013.

    Google Scholar 

  12. C. Zhu, Y. Kim, O. Aboul-Magd, C. Ngo, “Multi-user support in next generation wireless LAN,” in Proc. Consumer Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2011.

    Google Scholar 

  13. E. H. Ong, J. Kneckt, O. Alanen, Z. Chang, T. Huovinen, and T. Nihtil, “IEEE 802.11ac: Enhancements for very high throughput WLANs,” in Proc. Symp. on Personal, Indoor and Mobile Radio Commun. (PIMRC), Toronto, ON, Canada, Sep. 2011.

    Google Scholar 

  14. E. Perahia, M. X. Gong, “Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad,” ACM SIGMOBILE Mobile Comput. Commun. Review, vol. 15, no. 3, pp. 23–33, Jul. 2011.

    Article  Google Scholar 

  15. L. Verma, M. Fakharzadeh, and S. Choi, “Wifi on steroids: 802.11ac and 802.11ad,” IEEE Wireless Commun., vol. 20, no. 6, pp. 30–35, Dec. 2013.

    Article  Google Scholar 

  16. E. Perahia, C. Cordeiro, M. Park, and L. L. Yang, “IEEE 802.11 ad: Defining the next generation multi-Gbps Wi-Fi,” in Proc. Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA, Jan. 2010.

    Google Scholar 

  17. F. F. Digham, M. S. Alouini, M. K. Simon, “On the energy detection of unknown signals over fading channels,” IEEE Trans. Commun., vol. 55, no. 1, pp. 21–24, Jan. 2007.

    Google Scholar 

  18. M. Derakhshani, T. Le-Ngoc, M. Nasiri-Kenari, “Efficient cooperative cyclostationary spectrum sensing in cognitive radios at low SNR regimes,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3754–3764, Nov. 2011.

    Google Scholar 

  19. T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp. 116–130, First Quarter 2009.

    Google Scholar 

  20. E. Axell, G. Leus, E. Larsson, and H. Poor, “Spectrum sensing for cognitive radio: State-of-the-art and recent advances,” IEEE Signal Process. Mag., vol. 29, no. 3, pp. 101–116, Apr. 2012.

    Google Scholar 

  21. C. Cormio and K. R. Chowdhury, “A survey on MAC protocols for cognitive radio networks,” Ad Hoc Networks, vol. 7, no. 7, pp. 1315–1329, Sep. 2009.

    Article  Google Scholar 

  22. A. De Domenico, E. C. Strinati, and M. Di Benedetto, “A survey on MAC strategies for cognitive radio networks,” IEEE Commun. Surveys Tuts., vol. 14, no. 1, pp. 21–44, First Quarter 2012.

    Google Scholar 

  23. C. Cordeiro and K. Challapali, “C-MAC: A cognitive MAC protocol for multichannel wireless networks,” in Proc. IEEE Intl. Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Dublin, Ireland, Apr. 2007.

    Google Scholar 

  24. M. Timmers, S. Pollin, A. Dejonghe, L. Van der Perre, and F. Catthoor, “A distributed multichannel MAC protocol for multihop cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 446–459, Jan. 2010.

    Google Scholar 

  25. I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40–48, Apr. 2008.

    Google Scholar 

  26. E. Hossain, D. Niyato, and Z. Han, Dynamic Spectrum Access and Management in Cognitive Radio Networks. Cambridge, 2009.

    Google Scholar 

  27. K. Liu and Q. Zhao, “Cooperative game in dynamic spectrum access with unknown model and imperfect sensing,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1596–1604, 2012.

    Google Scholar 

  28. D. Niyato and E. Hossain, “Competitive spectrum sharing in cognitive radio networks: A dynamic game approach,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2651–2660, Jul. 2008.

    Google Scholar 

  29. M. Maskery, V. Krishnamurthy, and Q. Zhao, “Decentralized dynamic spectrum access for cognitive radios: Cooperative design of a non-cooperative game,” IEEE Trans. Wireless Commun., vol. 57, no. 2, pp. 459–469, Feb. 2009.

    Google Scholar 

  30. Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,”IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589–600, Apr. 2007.

    Google Scholar 

  31. H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 118–129, Jan. 2008.

    Google Scholar 

  32. J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 106–117, Jan 2008.

    Google Scholar 

  33. A. C. C. Hsu, D. S. L. Wei, and C.-C. J. Kuo, “A cognitive MAC protocol using statistical channel allocation for wireless ad-hoc networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Kowloon, Hong Kong, Mar. 2007.

    Google Scholar 

  34. H. Su and X. Zhang, “Channel-hopping based single transceiver MAC for cognitive radio networks,” in Proc. IEEE Conf. on Inf. Sciences and Systems (CISS), Princeton, NJ, USA, Mar. 2008.

    Google Scholar 

  35. B. Hamdaoui and K. G. Shin, “OS-MAC: An efficient MAC protocol for spectrum-agile wireless networks,” IEEE Trans. Mobile Comput., vol. 7, no. 8, pp. 915–930, Aug. 2008.

    Google Scholar 

  36. L. Le and E. Hossain, “A MAC protocol for opportunistic spectrum access in cognitive radio networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Las Vegas, NV, USA, Mar.–Apr. 2008.

    Google Scholar 

  37. S. Huang, X. Liu, and Z. Ding, “Opportunistic spectrum access in cognitive radio networks,” in Proc. IEEE Intl. Conf. on Computer Commun. (INFOCOM), Phoenix, AZ, USA, Apr. 2008.

    Google Scholar 

  38. Y. Chen, Q. Zhao, and A. Swami, “Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors,” IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 2053–2071, May 2008.

    MathSciNet  Google Scholar 

  39. Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sensing for multichannel opportunistic access: Structure, optimality, and performance,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5431–5440, Dec. 2008.

    Google Scholar 

  40. L. Lai, H. E. Gamal, H. Jiang, and H. Poor, “Cognitive medium access: Exploration, exploitation and competition,” IEEE Trans. Mobile Comput., vol. 10, no. 2, pp. 239–253, Feb. 2011.

    Google Scholar 

  41. K. Liu, Q. Zhao, and B. Krishnamachari, “Dynamic multichannel access with imperfect channel state detection,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2795–2808, May 2010.

    MathSciNet  Google Scholar 

  42. K. W. Sung, S. L. Kim, and J. Zander, “Temporal spectrum sharing based on primary user activity prediction,” IEEE Trans. Wireless Commun., vol. 9, no. 12, pp. 3848–3855, Dec. 2010.

    Google Scholar 

  43. K. W. Choi and E. Hossain, “Opportunistic access to spectrum holes between packet bursts: A learning-based approach,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2497–2509, Aug. 2011.

    MathSciNet  Google Scholar 

  44. Q. Zhao, S. Geirhofer, L. Tong, and B. M. Sadler, “Opportunistic spectrum access via periodic channel sensing,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 785–796, Feb. 2008.

    MathSciNet  Google Scholar 

  45. X. Liu, B. Krishnamachari, and H. Liu, “Channel selection in multi-channel opportunistic spectrum access networks with perfect sensing,” in Proc. IEEE Intl. Symp. New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Singapore, Apr. 2010.

    Google Scholar 

  46. R. Smallwood and E. Sondik, “The optimal control of partially observable Markov processes over a finite horizon,” Operations Research, vol. 21, no. 5, pp. 1071–1088, 1973.

    Article  MATH  Google Scholar 

  47. E. Hossain, L. Le, N. Devroye, and M. Vu, “Cognitive radio: From theory to practical network engineering,” in New Directions in Wireless Communications Research. Springer, 2009, pp. 251–289.

    Google Scholar 

  48. D. A. Berry and B. Fristedt, Bandit problems: Sequential allocation of experiments. London: Chapman and Hall, 1985.

    Book  MATH  Google Scholar 

  49. M. Derakhshani and T. Le-Ngoc, “Learning-based opportunistic spectrum access with adaptive hopping transmission strategy,”, IEEE Trans. Wireless. Commun., vol. 11, no. 11, pp. 3957–3967, Nov. 2012.

    Google Scholar 

  50. M. Derakhshani and T. Le-Ngoc, “Distributed learning-based spectrum allocation with noisy observations in cognitive radio networks,”, vol. 63, no. 8, pp.3715-3725, Oct. 2014. IEEE Trans. Veh. Technol.

    Google Scholar 

  51. M. Derakhshani and T. Le-Ngoc, “Intelligent CSMA-based opportunistic spectrum access: Competition and cooperation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Anaheim, CA, USA, Dec. 2012.

    Google Scholar 

  52. M. Derakhshani and T. Le-Ngoc, “Adaptive access control of CSMA/CA in wireless LANs for throughput improvement,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Atlanta, GA, USA, Dec. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Derakhshani .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Derakhshani, M., Le-Ngoc, T. (2014). Cognitive MAC Designs: Background. In: Cognitive MAC Designs for OSA Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12649-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12649-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12648-7

  • Online ISBN: 978-3-319-12649-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics