Skip to main content

Mechanotransduction, Metastasis and Genomic Instability

  • Chapter
  • First Online:
Book cover Genomic Instability and Cancer Metastasis

Abstract

Cells translate mechanical forces in the environment into biochemical signals in a process called mechanotransduction. In this way, mechanical forces direct cell behavior, including motility, proliferation, and differentiation, and become important in physiological processes such as development and wound healing. Abnormalities in mechanotransduction can lead to aberrant cell behavior and disease, including cancer. Changes in extracellular mechanical forces or defects in mechanosensors can result in misregulation of signaling pathways inside the cell, and ultimately lead to malignancy. Here, we discuss the ways in which physical attributes of the tumor microenvironment can promote metastasis and genomic instability, two hallmark features of cancer.

Authors Allison Simi and Alexandra Piotrowski have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

αSMA:

α-smooth muscle actin

bFGFBasic:

fibroblast growth factor

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular-signal-regulated kinase

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

GIN:

Genomic instability

IFP:

Interstitial fluid pressure

ILK:

Integrin-linked kinase

MET:

Mechanoelectrical transduction

MLC:

Myosin light chain

MMP:

Matrix metalloproteinase

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PTEN:

Phosphatase and tensin homolog

ROCK:

Rho-associated kinase

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

TAZ:

transcriptional co-activator with PDZ-binding motif

TGF-β:

Transforming growth factor β

VEGF:

Vascular endothelial growth factor

YAP:

Yes-associated protein

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  3. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179

    PubMed Central  PubMed  Google Scholar 

  4. Fang H, Declerck YA (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 73(16):4965–4977

    CAS  PubMed  Google Scholar 

  5. Fidler IJ, Poste G (2008) The “seed and soil” hypothesis revisited. Lancet Oncol 9(8):808

    PubMed  Google Scholar 

  6. Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5(1):1–16

    CAS  PubMed  Google Scholar 

  7. Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176

    CAS  PubMed  Google Scholar 

  8. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323(5914):642–644

    CAS  PubMed  Google Scholar 

  9. Paszek MJ, Boettiger D, Weaver VM, Hammer DA (2009) Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput Biol 5(12):e1000604

    Google Scholar 

  10. Ma Z, Finkel TH (2010) T cell receptor triggering by force. Trends Immunol 31(1):1–6

    PubMed Central  PubMed  Google Scholar 

  11. Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    PubMed  Google Scholar 

  13. Assoian RK, Klein EA (2008) Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18(7):347–352

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20

    CAS  PubMed  Google Scholar 

  15. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    CAS  PubMed  Google Scholar 

  16. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    CAS  PubMed  Google Scholar 

  18. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20(7):811–827

    CAS  PubMed  Google Scholar 

  19. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, Wofovitz E (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3):177–199

    PubMed  Google Scholar 

  20. Wang JH, Goldschmidt-Clermont P, Wille J, Yin FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572

    CAS  PubMed  Google Scholar 

  21. Wells RG, Discher DE (2008) Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal 1(10):pe13

    Google Scholar 

  22. Gloe T, Sohn HY, Meininger GA, Pohl U (2002) Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J Biol Chem 277(26):23453–23458

    CAS  PubMed  Google Scholar 

  23. Acevedo AD, Bowser SS, Gerritsen ME, Bizios R (1993) Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J Cell Physiol 157(3):603–614

    CAS  PubMed  Google Scholar 

  24. Yang JH, Sakamoto H, Xu EC, Lee RT (2000) Biomechanical regulation of human monocyte/macrophage molecular function. Am J Pathol 156(5):1797–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59: 575–599

    CAS  PubMed  Google Scholar 

  26. Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ (2012) Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci 125(Pt 24):5974–5983

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. J Biol Chem 277(25):22889–22895

    CAS  PubMed  Google Scholar 

  28. Solon J, Levental I, Sengupta K, Georges PC, Janmey PA (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93(12):4453–4461

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7(1):19–29

    CAS  PubMed  Google Scholar 

  30. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    CAS  PubMed  Google Scholar 

  31. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120(3):577–585

    CAS  PubMed  Google Scholar 

  32. Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5(10):816–826

    CAS  PubMed  Google Scholar 

  33. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, Schwartz MA (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25(5):613–618

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP (1993) Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol 123(4):977–991

    CAS  PubMed  Google Scholar 

  35. Urbich C, Dernbach E, Reissner A, Vasa M, Zeiher AM, Dimmeler S (2002) Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha(5) and beta(1). Arterioscler Thromb Vasc Biol 22(1):69–75

    CAS  PubMed  Google Scholar 

  36. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    CAS  PubMed  Google Scholar 

  37. Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518

    CAS  PubMed  Google Scholar 

  38. Seong J, Wang N, Wang Y (2013) Mechanotransduction at focal adhesions: from physiology to cancer development. J Cell Mol Med 17(5):597–604

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Goldmann WH (2012) Mechanotransduction and focal adhesions. Cell Biol Int 36(7):649–652

    CAS  PubMed  Google Scholar 

  40. Govey PM, Jacobs JM, Tilton SC, Loiselle AE, Zhang Y, Freeman WM, Waters KM, Karin NJ, Donahue HJ (2014) Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways. J Biomech 47(8):1838–1845

    PubMed  Google Scholar 

  41. Gudi SR, Clark CB, Frangos JA (1996) Fluid flow rapidly activates g proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res 79(4):834–839

    CAS  PubMed  Google Scholar 

  42. Gudi SR, Lee AA, Clark CB, Frangos JA (1998) Equibiaxial strain and strain rate stimulate early activation of G proteins in cardiac fibroblasts. Am J Physiol 274(5 Pt 1):C1424–1428

    CAS  PubMed  Google Scholar 

  43. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212

    CAS  PubMed  Google Scholar 

  44. Cobb MH, Robbins DJ, Boulton TG (1991) Erks, extracellular signal-regulated map-2 kinases. Curr Opin Cell Biol 3(6):1025–1032

    CAS  PubMed  Google Scholar 

  45. Chess PR, Toia L, Finkelstein JN (2000) Mechanical strain-induced proliferation and signaling in pulmonary epithelial h441 cells. Am J Physiol Lung Cell Mol Physiol 279(1):L43–L51

    CAS  PubMed  Google Scholar 

  46. Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM (1997) Differential effect of shear stress on extracellular signal-regulated kinase and n-terminal jun kinase in endothelial cells. Gi2- and gbeta/gamma-dependent signaling pathways. J Biol Chem 272(2):1395–1401

    CAS  PubMed  Google Scholar 

  47. Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, Rychly J (1996) Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70(2):157–164

    CAS  PubMed  Google Scholar 

  48. Shen J, Luscinskas FW, Connolly A, Dewey CF, Jr, Gimbrone MA Jr (1992) Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol 262(2 Pt 1):C384–390

    CAS  PubMed  Google Scholar 

  49. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278(2):H521–529

    CAS  PubMed  Google Scholar 

  50. Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796(2):293–308

    CAS  PubMed  Google Scholar 

  51. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376

    CAS  PubMed  Google Scholar 

  52. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL (2012) Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci U S A 109(3):911–916

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    PubMed Central  PubMed  Google Scholar 

  54. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76(1):69–125

    CAS  PubMed  Google Scholar 

  55. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9(4):325–342

    PubMed  Google Scholar 

  56. Reno F, Grazianetti P, Stella M, Magliacani G, Pezzuto C, Cannas M (2002) Release and activation of matrix metalloproteinase-9 during in vitro mechanical compression in hypertrophic scars. Arch Dermatol 138(4):475–478

    CAS  PubMed  Google Scholar 

  57. Joshi HC, Chu D, Buxbaum RE, Heidemann SR (1985) Tension and compression in the cytoskeleton of pc 12 neurites. J Cell Biol 101(3):697–705

    CAS  PubMed  Google Scholar 

  58. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3(4):413–438

    PubMed Central  PubMed  Google Scholar 

  60. Petrie RJ, Yamada KM (2012) At the leading edge of three-dimensional cell migration. J Cell Sci 125(Pt 24):5917–5926

    CAS  PubMed Central  PubMed  Google Scholar 

  61. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13(5):534–540

    CAS  PubMed  Google Scholar 

  62. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472

    CAS  PubMed  Google Scholar 

  63. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20(4):260–274

    CAS  PubMed  Google Scholar 

  64. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    CAS  PubMed  Google Scholar 

  65. Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned young's modulus. J Biomed Mater Res A 66(3):605–614

    PubMed  Google Scholar 

  66. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9(8):893–904

    CAS  PubMed  Google Scholar 

  68. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374

    CAS  PubMed  Google Scholar 

  69. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    PubMed Central  PubMed  Google Scholar 

  70. Wolf K, Friedl P (2009) Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 26(4):289–298

    CAS  PubMed  Google Scholar 

  71. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol (Camb) 4(4):401–409

    CAS  Google Scholar 

  74. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111(7):2447–2452

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Hebner C, Weaver VM, Debnath J (2008) Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol 3:313–339

    CAS  PubMed  Google Scholar 

  76. Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T, Konishi I (2003) Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 83(6):861–870

    CAS  PubMed  Google Scholar 

  77. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/rock signalling and extracellular proteolysis. Nat Cell Biol 5 (8):711–719

    CAS  PubMed  Google Scholar 

  78. Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114(Pt 15):2713–2722

    CAS  PubMed  Google Scholar 

  79. Sahai E, Marshall CJ (2002) Rho-GTPases and cancer. Nat Rev Cancer 2(2):133–142

    PubMed  Google Scholar 

  80. Lozano E, Betson M, Braga VM (2003) Tumor progression: small GTPases and loss of cell-cell adhesion. Bioessays 25 (5):452–463

    CAS  PubMed  Google Scholar 

  81. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    CAS  PubMed  Google Scholar 

  82. Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7(6):429–440

    CAS  PubMed  Google Scholar 

  83. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23(48):7906–7909

    CAS  PubMed  Google Scholar 

  84. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    CAS  PubMed  Google Scholar 

  85. Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, Jia L, Mayer BJ, Weed SA (2010) Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J Cell Sci 123(Pt 22):3923–3932

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Polackwich RJ, Koch D, Arevalo R, Miermont AM, Jee KJ, Lazar J, Urbach J, Mueller SC, McAllister RG (2013) A novel 3d fibril force assay implicates Src in tumor cell force generation in collagen networks. PLoS ONE 8(3):e58138

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Plantefaber LC, Hynes RO (1989) Changes in integrin receptors on oncogenically transformed cells. Cell 56(2):281–290

    CAS  PubMed  Google Scholar 

  89. Ochalek T, Nordt FJ, Tullberg K, Burger MM (1988) Correlation between cell deformability and metastatic potential in b16-f1 melanoma cell variants. Cancer Res 48(18):5124–5128

    CAS  PubMed  Google Scholar 

  90. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    CAS  PubMed  Google Scholar 

  92. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    CAS  PubMed  Google Scholar 

  93. Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM (2012) Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition. Mol Biol Cell 23(20):4097–4108

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Gomez EW, Chen QK, Gjorevski N, Nelson CM (2010) Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 110(1):44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between tgf-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23(5):781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12(1):27–36

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–11

    CAS  PubMed  Google Scholar 

  98. Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29(7):364–370

    CAS  PubMed  Google Scholar 

  99. Seltmann K, Fritsch AW, Kas JA, Magin TM (2013) Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 110(46):18507–18512

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1(5):E131–E138

    CAS  PubMed  Google Scholar 

  101. Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345–C1350

    CAS  PubMed  Google Scholar 

  102. Geiger TR, Peeper DS (2005) The neurotrophic receptor trkb in anoikis resistance and metastasis: a perspective. Cancer Res 65(16):7033–7036

    CAS  PubMed  Google Scholar 

  103. Zhu Z, Sanchez-Sweatman O, Huang X, Wiltrout R, Khokha R, Zhao Q, Gorelik E (2001) Anoikis and metastatic potential of cloudman s91 melanoma cells. Cancer Res 61(4):1707–1716

    CAS  PubMed  Google Scholar 

  104. Frisch SM, Ruoslahti E (1997) Integrins and anoikis. Curr Opin Cell Biol 9(5):701–706

    CAS  PubMed  Google Scholar 

  105. Attwell S, Roskelley C, Dedhar S (2000) The integrin-linked kinase (ilk) suppresses anoikis. Oncogene 19(33):3811–3815

    CAS  PubMed  Google Scholar 

  106. Frisch SM, Schaller M, Cieply B (2013) Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 126(Pt 1):21–29

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of e-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5):437–449

    CAS  PubMed  Google Scholar 

  108. Aguilera A, Garcia-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32

    CAS  PubMed  Google Scholar 

  109. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog msh2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    CAS  PubMed  Google Scholar 

  110. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819

    CAS  PubMed  Google Scholar 

  111. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR, Cheadle JP (2002) Inherited variants of myh associated with somatic G:C → T:A mutations in colorectal tumors. Nat Genet 30(2):227–232

    CAS  PubMed  Google Scholar 

  112. Coschi CH, Dick FA (2012) Chromosome instability and deregulated proliferation: an unavoidable duo. Cell Mol Life Sci 69(12):2009–2024

    CAS  PubMed  Google Scholar 

  113. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228

    CAS  PubMed  Google Scholar 

  114. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345

    CAS  PubMed  Google Scholar 

  115. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Bindra RS, Glazer PM (2005) Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569(1–2):75–85

    CAS  PubMed  Google Scholar 

  117. Paquette B, Little JB (1994) In vivo enhancement of genomic instability in minisatellite sequences of mouse c3h/10t1/2 cells transformed in vitro by x-rays. Cancer Res 54(12):3173–3178

    CAS  PubMed  Google Scholar 

  118. Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56(24):5754–5757

    CAS  PubMed  Google Scholar 

  119. Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW, Huang Q (2001) Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res 61(2):428–432

    CAS  PubMed  Google Scholar 

  120. Petermann AT, Hiromura K, Blonski M, Pippin J, Monkawa T, Durvasula R, Couser WG, Shankland SJ (2002) Mechanical stress reduces podocyte proliferation in vitro. Kidney Int 61(1):40–50

    CAS  PubMed  Google Scholar 

  121. Shoham N, Gefen A (2012) The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures. Biomech Model Mechanobiol 11(7):1029–1045

    PubMed  Google Scholar 

  122. Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209–1224

    CAS  PubMed  Google Scholar 

  123. Liu WF, Nelson CM, Tan JL, Chen CS (2007) Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res 101(5):e44–52

    CAS  PubMed  Google Scholar 

  124. Liu WF, Nelson CM, Pirone DM, Chen CS (2006) E-cadherin engagement stimulates proliferation via Rac1. J Cell Biol 173(3):431–441

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Nelson CM, Chen CS (2002) Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett 514(2–3):238–242

    CAS  PubMed  Google Scholar 

  126. Nelson CM, Chen CS (2003) Ve-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 116(Pt 17):3571–3581

    CAS  PubMed  Google Scholar 

  127. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A 89(19):9064–9068

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Fink J, Carpi N, Betz T, Betard A, Chebah M, Azioune A, Bornens M, Sykes C, Fetler L, Cuvelier D, Piel M (2011) External forces control mitotic spindle positioning. Nat Cell Biol 13(7):771–778

    CAS  PubMed  Google Scholar 

  129. Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita JB, Bornens M (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7(10):947–953

    CAS  PubMed  Google Scholar 

  130. Toyoshima F, Nishida E (2007) Integrin-mediated adhesion orients the spindle parallel to the substratum in an eb1- and myosin x-dependent manner. EMBO J 26(6):1487–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Ahringer J (2003) Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol 15(1):73–81

    CAS  PubMed  Google Scholar 

  132. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392(6673):300–303

    CAS  PubMed  Google Scholar 

  133. Pelham RJ, Jr., Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194(3):348–349. (discussion 349–350)

    CAS  PubMed  Google Scholar 

  134. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of yap/taz in mechanotransduction. Nature 474(7350):179–183

    CAS  PubMed  Google Scholar 

  135. Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN, Acerbi I, Ou G, Wijekoon AC, Levental KR, Gilbert PM, Hwang ES, Chen YY, Weaver VM (2014) Tissue mechanics modulate microrna-dependent pten expression to regulate malignant progression. Nat Med 20(4):360–367

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Krasilnikov MA (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65(1):59–67

    CAS  Google Scholar 

  137. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the raf/mek/erk pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Takenaka K, Moriguchi T, Nishida E (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280(5363):599–602

    CAS  PubMed  Google Scholar 

  139. Avivar-Valderas A, Wen HC, Aguirre-Ghiso JA (2014) Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene. doi:10.1038/onc.2013.554

    Google Scholar 

  140. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA (2011) P38alpha signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal 4(174):ra34

    PubMed Central  PubMed  Google Scholar 

  141. Howlett AR, Petersen OW, Steeg PS, Bissell MJ (1994) A novel function for the nm23-h1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J Natl Cancer Inst 86(24):1838–1844

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Lo KY, Zhu Y, Tsai HF, Sun YS (2013) Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells. Biomicrofluidics 7(6):64108

    PubMed  Google Scholar 

  143. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    PubMed Central  PubMed  Google Scholar 

  144. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913

    CAS  PubMed  Google Scholar 

  145. Radisky DC, Bissell MJ (2006) Matrix metalloproteinase-induced genomic instability. Curr Opin Genet Dev 16(1):45–50

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate mmp-3-induced emt and genomic instability. Nature 436(7047):123–127

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Zheng W, Christensen LP, Tomanek RJ (2008) Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295(2):H794–800

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH, Hartnett ME, Bautch VL (2007) Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109(4):1345–1352

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Fedele C, Tothill RW, McArthur GA (2014) Navigating the challenge of tumor heterogeneity in cancer therapy. Cancer Discov 4(2):146–148

    CAS  PubMed  Google Scholar 

  150. Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124(Pt 1):9–18

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Liu YS, Lee OK (2014) In search of the pivot point of mechanotransduction: mechanosensing of stem cells. Cell Transplant 23(1):1–11

    PubMed  Google Scholar 

  152. Hao J, Zhang Y, Ye R, Zheng Y, Zhao Z, Li J (2013) Mechanotransduction in cancer stem cells. Cell Biol Int 37(9):888–891

    CAS  PubMed  Google Scholar 

  153. Gnoni A, Marech I, Silvestris N, Vacca A, Lorusso V (2011) Dasatinib: an anti-tumour agent via Src inhibition. Curr Drug Targets 12(4):563–578

    CAS  PubMed  Google Scholar 

  154. Tan K, Goldstein D, Crowe P, Yang JL (2013) Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. J Cancer Res Clin Oncol 139(11):1795–1805

    CAS  PubMed  Google Scholar 

  155. Chauhan et al. (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng

    CAS  PubMed  Google Scholar 

  156. Polacheck et al. (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. PNAS

    CAS  PubMed  Google Scholar 

  157. Tien et al. (2012) Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. Plos One

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Simi, A., Piotrowski, A., Nelson, C. (2015). Mechanotransduction, Metastasis and Genomic Instability. In: Maxwell, C., Roskelley, C. (eds) Genomic Instability and Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-12136-9_7

Download citation

Publish with us

Policies and ethics