Skip to main content

Regulation of Blood Vessels by Prolactin and Vasoinhibins

  • Chapter
  • First Online:
Book cover Recent Advances in Prolactin Research

Abstract

Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-12114-7_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR (2006) Focus on prolactin as a metabolic hormone. Trends Endocr Metab TEM 17(3):110–116

    Article  CAS  Google Scholar 

  3. Grattan DR, Kokay IC (2008) Prolactin: a pleiotropic neuroendocrine hormone. J Neuroendocrinol 20(6):752–763

    Article  CAS  PubMed  Google Scholar 

  4. Clapp C, Thebault S, Jeziorski MC, Martinez De La Escalera G (2009) Peptide hormone regulation of angiogenesis. Physiol Rev 89(4):1177–1215

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N, Clapp C, Weiner R (1991) The 16 K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129(2):896–900

    Article  CAS  PubMed  Google Scholar 

  6. Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133(3):1292–1299

    CAS  PubMed  Google Scholar 

  7. D’Angelo G, Struman I, Martial J, Weiner RI (1995) Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Nat Acad Sci U S A 92(14):6374–6378

    Article  Google Scholar 

  8. D’Angelo G, Martini JF, Iiri T, Fantl WJ, Martial J, Weiner RI (1999) 16 K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol Endocrinol 13(5):692–704

    Article  PubMed  Google Scholar 

  9. Galfione M, Luo W, Kim J, Hawke D, Kobayashi R, Clapp C, Yu-Lee LY, Lin SH (2003) Expression and purification of the angiogenesis inhibitor 16-kDa prolactin fragment from insect cells. Protein Expr Purif 28(2):252–258

    Article  CAS  PubMed  Google Scholar 

  10. Garcia C, Aranda J, Arnold E, Thebault S, Macotela Y, Lopez-Casillas F, Mendoza V, Quiroz-Mercado H, Hernandez-Montiel HL, Lin SH, de la Escalera GM, Clapp C (2008) Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2 A-dependent eNOS inactivation. J Clin Invest 118(6):2291–2300

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Tabruyn SP, Sorlet CM, Rentier-Delrue F, Bours V, Weiner RI, Martial JA, Struman I (2003) The antiangiogenic factor 16 K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 17(9):1815–1823

    Article  CAS  PubMed  Google Scholar 

  12. Pan H, Nguyen NQ, Yoshida H, Bentzien F, Shaw LC, Rentier-Delrue F, Martial JA, Weiner R, Struman I, Grant MB (2004) Molecular targeting of antiangiogenic factor 16 K hPRL inhibits oxygen-induced retinopathy in mice. Investig Ophthalmol Visual Sci 45(7):2413–2419

    Article  Google Scholar 

  13. Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600

    Article  CAS  PubMed  Google Scholar 

  14. Faupel-Badger JM, Ginsburg E, Fleming JM, Susser L, Doucet T, Vonderhaar BK (2010) 16 kDa prolactin reduces angiogenesis, but not growth of human breast cancer tumors in vivo. Horm Cancer 1(2):71–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Baldocchi RA, Tan L, King DS, Nicoll CS (1993) Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: evidence that the cleaving enzyme is cathepsin D. Endocrinology 133(2):935–938.

    CAS  PubMed  Google Scholar 

  16. Ishida M, Maehara M, Watanabe T, Yanagisawa Y, Takata Y, Nakajima R, Suzuki M, Harigaya T (2014) Vasoinhibins, N-terminal mouse prolactin fragments, participate in mammary gland involution. J Mol Endocrinol

    Google Scholar 

  17. Erdmann S, Ricken A, Merkwitz C, Struman I, Castino R, Hummitzsch K, Gaunitz F, Isidoro C, Martial J, Spanel-Borowski K (2007) The expression of prolactin and its cathepsin D-mediated cleavage in the bovine corpus luteum vary with the estrous cycle. Am J Physiol Endocrinol Metab 293(5):E1365–E1377

    Google Scholar 

  18. Lee J, Majumder S, Chatterjee S, Muralidhar K (2011) Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis. J Biosci 36(2):341–354

    Article  CAS  PubMed  Google Scholar 

  19. Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA, Goffin V (2004) Cathepsin D processes human prolactin into multiple 16 K-like N-terminal fragments: study of their antiangiogenic properties and physiological relevance. Mol Endocr 18(10):2522–2542

    Article  CAS  Google Scholar 

  20. Macotela Y, Aguilar MB, Guzman-Morales J, Rivera JC, Zermeno C, Lopez-Barrera F, Nava G, Lavalle C, Martinez de la Escalera G, Clapp C (2006) Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J Cell Sci 119(Pt 9):1790–1800

    Article  CAS  PubMed  Google Scholar 

  21. Ge G, Fernandez CA, Moses MA, Greenspan DS (2007) Bone morphogenetic protein 1 processes prolactin to a 17-kDa antiangiogenic factor. Proc Nat Acad Sci U S A 104 (24):10010–10015

    Article  CAS  Google Scholar 

  22. Clapp C, Aranda J, Gonzalez C, Jeziorski MC, Martinez de la Escalera G (2006) Vasoinhibins: endogenous regulators of angiogenesis and vascular function. Trends Endocr Metab TEM 17(8):301–307

    Article  CAS  Google Scholar 

  23. Cruz-Soto ME, Cosio G, Jeziorski MC, Vargas-Barroso V, Aguilar MB, Carabez A, Berger P, Saftig P, Arnold E, Thebault S, Martinez de la Escalera G, Clapp C (2009) Cathepsin D is the primary protease for the generation of adenohypophyseal vasoinhibins: cleavage occurs within the prolactin secretory granules. Endocrinology 150(12):5446–5454

    Article  CAS  PubMed  Google Scholar 

  24. Rochefort H, Chalbos D, Cunat S, Lucas A, Platet N, Garcia M (2001) Estrogen regulated proteases and antiproteases in ovarian and breast cancer cells. J Steroid Biochem Mol Biol 76(1–5):119–124

    Article  CAS  PubMed  Google Scholar 

  25. Ferraris J, Radl DB, Zarate S, Jaita G, Eijo G, Zaldivar V, Clapp C, Seilicovich A, Pisera D (2011) N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary. PloS ONE 6(7):e21806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cosio G, Jeziorski MC, Lopez-Barrera F, De La Escalera GM, Clapp C (2003) Hypoxia inhibits expression of prolactin and secretion of cathepsin-D by the GH4C1 pituitary adenoma cell line. Lab Invest 83(11):1627–1636

    Article  CAS  PubMed  Google Scholar 

  27. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, Folkman J, Moses MA (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274(41):29568–29571

    Article  PubMed  Google Scholar 

  28. Gonzalez EM, Reed CC, Bix G, Fu J, Zhang Y, Gopalakrishnan B, Greenspan DS, Iozzo RV (2005) BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J Biol Chem 280(8):7080–7087

    Article  CAS  PubMed  Google Scholar 

  29. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  PubMed Central  PubMed  Google Scholar 

  30. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    Article  CAS  PubMed  Google Scholar 

  31. Clapp C, Torner L, Gutierrez-Ospina G, Alcantara E, Lopez-Gomez FJ, Nagano M, Kelly PA, Mejia S, Morales MA, Martinez de la Escalera G (1994) The prolactin gene is expressed in the hypothalamic-neurohypophyseal system and the protein is processed into a 14-kDa fragment with activity like 16-kDa prolactin. Proc Nat Acad Sci U S A 91(22):10384–10388

    Article  CAS  Google Scholar 

  32. Zamorano M, Ledesma-Colunga M, Adán N, Vera-Massieu C, Lemini M, Méndez I, Moreno-Carranza B, Neumann I, Thebault S, Martínez de la Escalera G, Torner L, Clapp C (2014) Vasoinhibin increases anxiety- and depression-related behaviors. Psychoneuroendocrinology Accepted (PNEC-D-13-00742). doi:10.1016/j.psyneuen.2014.03.006

    Google Scholar 

  33. Aranda J, Rivera JC, Jeziorski MC, Riesgo-Escovar J, Nava G, Lopez-Barrera F, Quiroz-Mercado H, Berger P, Martinez de la Escalera G, Clapp C (2005) Prolactins are natural inhibitors of angiogenesis in the retina. Invest Ophthalmol Visual Sci 46(8):2947–2953

    Article  Google Scholar 

  34. Triebel J, Huefner M, Ramadori G (2009) Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy. Eur J Endocrinol/Eur Federation End Soc 161(2):345–353

    Article  CAS  Google Scholar 

  35. Gonzalez C, Parra A, Ramirez-Peredo J, Garcia C, Rivera JC, Macotela Y, Aranda J, Lemini M, Arias J, Ibarguengoitia F, de la Escalera GM, Clapp C (2007) Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest 87(10):1009–1017

    Article  CAS  PubMed  Google Scholar 

  36. Clapp C, Thebault S, Martinez de la Escalera G (2008) Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 13(1):55–67

    Article  PubMed  Google Scholar 

  37. Johansson M, Olerud J, Jansson L, Carlsson PO (2009) Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology 150(4):1646–1653

    Article  CAS  PubMed  Google Scholar 

  38. Moreno-Carranza B, Goya-Arce M, Vega C, Adan N, Triebel J, Lopez-Barrera F, Quintanar-Stephano A, Binart N, Martinez de la Escalera G, Clapp C (2013) Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis. Am J Physiol Regul Integr Comp Physiol 305(7):R720–R726

    Article  CAS  PubMed  Google Scholar 

  39. Olazabal IM, Munoz JA, Rodriguez-Navas C, Alvarez L, Delgado-Baeza E, Garcia-Ruiz JP (2009) Prolactin’s role in the early stages of liver regeneration in rats. J Cell Physiol 219(3):626–633

    Article  CAS  PubMed  Google Scholar 

  40. Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thusen JH, Twickler MT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS (2012) Functional consequences of prolactin signalling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Meyer K, Friedl A (2013) STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 288(29):21184–21196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rosas-Hernandez H, Cuevas E, Lantz SM, Hamilton WR, Ramirez-Lee MA, Ali SF, Gonzalez C (2013) Prolactin and blood-brain barrier permeability. Curr Neurovasc Res 10(4):278–286

    Article  CAS  PubMed  Google Scholar 

  43. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vascu Res 49(5):390–404

    Article  Google Scholar 

  44. Castilla A, Garcia C, Cruz-Soto M, Martinez de la Escalera G, Thebault S, Clapp C (2010) Prolactin in ovarian follicular fluid stimulates endothelial cell proliferation. J Vasc Res 47(1):45–53

    Article  CAS  PubMed  Google Scholar 

  45. Yang X, Qiao D, Meyer K, Friedl A (2009) Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res 69(4):1668–1677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123(5):2143–2154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Thebault S, González C, García C, Arredondo Zamarripa D, Nava G, Vaca L, López-Casillas F, Martínez de la Escalera G, Clapp C (2011) Vasoinhibins prevent bradykinin-stimulated endothelial cell proliferation by inactivating eNOS via reduction of both intracellular Ca2+ levels and eNOS phosphorylation at Ser1179. Pharmaceuticals 4:1052–1069

    Article  PubMed Central  CAS  Google Scholar 

  48. Garcia C, Nunez-Anita RE, Thebault S, Arredondo Zamarripa D, Jeziorsky MC, Martínez de la Escalera G, Clapp C (2014) Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro. Endocrine 45(2):263–270

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen NQ, Castermans K, Berndt S, Herkenne S, Tabruyn SP, Blacher S, Lion M, Noel A, Martial JA, Struman I (2011) The antiangiogenic 16 K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PloS ONE 6(11):e27318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Tabruyn SP, Sabatel C, Nguyen NQ, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I (2007) The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 21(6):1422–1429

    Article  CAS  PubMed  Google Scholar 

  51. Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O (2007) Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 178(3):1505–1511

    Article  CAS  PubMed  Google Scholar 

  52. Clapp C, Weiner RI (1992) A specific, high affinity, saturable binding site for the 16-kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130(3):1380–1386

    CAS  PubMed  Google Scholar 

  53. Shi H, Huang Y, Zhou H, Song X, Yuan S, Fu Y, Luo Y (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906

    Article  CAS  PubMed  Google Scholar 

  54. Takada Y (2012) Potential role of kringle-integrin interaction in plasmin and uPA actions (a hypothesis). J Biomed Biotechnol 2012:136302. doi:136310.131155/132012/136302

    Article  PubMed Central  PubMed  Google Scholar 

  55. Clapp C, Thebault S, Arnold E, Garcia C, Rivera JC, de la Escalera GM (2008) Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 295(4):E772–E778

    Article  CAS  PubMed  Google Scholar 

  56. Hilfiker-Kleiner D, Sliwa K (2014) Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat Rev Cardiol. doi:10.1038/nrcardio.2014.37

    Google Scholar 

  57. Clapp C, Martinez de la Escalera L, Martinez de la Escalera G (2012) Prolactin and blood vessels: a comparative endocrinology perspective. Gen Comp Endocrinol 176(3):336–340

    Article  CAS  PubMed  Google Scholar 

  58. Andres AC, Djonov V (2010) The mammary gland vasculature revisited. J Mammary Gland Biol Neoplasia 15(3):319–328

    Article  PubMed  Google Scholar 

  59. Zaragoza R, Torres L, Garcia C, Eroles P, Corrales F, Bosch A, Lluch A, Garcia-Trevijano ER, Vina JR (2009) Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation. Biochem J 419(2):279–288

    Article  CAS  PubMed  Google Scholar 

  60. Castino R, Delpal S, Bouguyon E, Demoz M, Isidoro C, Ollivier-Bousquet M (2008) Prolactin promotes the secretion of active cathepsin D at the basal side of rat mammary acini. Endocrinology 149(8):4095–4105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Baldocchi RA, Tan L, Hom YK, Nicoll CS (1995) Comparison of the ability of normal mouse mammary tissues and mammary adenocarcinoma to cleave rat prolactin. Proc Soc Exp Biol Med 208(3):283–287

    Article  CAS  PubMed  Google Scholar 

  62. Gill S, Peston D, Vonderhaar BK, Shousha S (2001) Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study. J Clin Pathol 54(12):956–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Le JA, Wilson HM, Shehu A, Mao J, Devi YS, Halperin J, Aguilar T, Seibold A, Maizels E, Gibori G (2012) Generation of mice expressing only the long form of the prolactin receptor reveals that both isoforms of the receptor are required for normal ovarian function. Biol Reprod 86(3):86

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K (2007) The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res 44(1):19–30

    Article  CAS  PubMed  Google Scholar 

  65. Arnold E, Rivera JC, Thebault S, Moreno-Paramo D, Quiroz-Mercado H, Quintanar-Stephano A, Binart N, Martinez de la Escalera G, Clapp C (2010) High levels of serum prolactin protect against diabetic retinopathy by increasing ocular vasoinhibins. Diabetes 59(12):3192–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ramirez M, Wu Z, Moreno-Carranza B, Jeziorski MC, Arnold E, Diaz-Lezama N, Martinez de la Escalera G, Colosi P, Clapp C (2011) Vasoinhibin gene transfer by adenoassociated virus type 2 protects against VEGF- and diabetes-induced retinal vasopermeability. Invest Ophthalmol Visual Sci 52(12):8944–8950

    Article  Google Scholar 

  67. Haghikia A, Podewski E, Libhaber E, Labidi S, Fischer D, Roentgen P, Tsikas D, Jordan J, Lichtinghagen R, von Kaisenberg CS, Struman I, Bovy N, Sliwa K, Bauersachs J, Hilfiker-Kleiner D (2013) Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol 108(4):366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mukherjee S, Kar M, Dutta S (1991) Observation on serum prolactin in hepatic cirrhosis. J Indian Med Assoc 89(11):307–308

    CAS  PubMed  Google Scholar 

  69. Buckley AR, Crowe PD, Bauman PA, Neumayer LA, Laird HE, 2nd, Russell DH, Putnam CW (1991) Prolactin-provoked alterations of cytosolic, membrane, and nuclear protein kinase C following partial hepatectomy. Dig Dis Sci 36(9):1313–1319

    Article  CAS  PubMed  Google Scholar 

  70. Sorenson RL, Brelje TC (1997) Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 29(6):301–307

    Article  CAS  PubMed  Google Scholar 

  71. Dubois S, Madec AM, Mesnier A, Armanet M, Chikh K, Berney T, Thivolet C (2010) Glucose inhibits angiogenesis of isolated human pancreatic islets. J Mol Endocrinol 45(2):99–105

    Article  CAS  PubMed  Google Scholar 

  72. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, Liu J, Wang Y, Fu Y, Yang GY (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21(1):37–43

    Article  CAS  PubMed  Google Scholar 

  73. Park KE, Pepine CJ (2010) Pathophysiologic mechanisms linking impaired cardiovascular health and neurologic dysfunction: the year in review. Clevel Clin J Med 77(Suppl 3):S40–S45

    Article  Google Scholar 

Download references

Acknowledgements

We thank Guadalupe Calderón for her artistic illustration, Fernando López-Barrera, Gabriel Nava, and Francisco Javier Valles Valenzuela for their technical assistance, and Dorothy D. Pless for critically editing the manuscript. This work was supported by grants from the National Council of Science and Technology of Mexico (161594 and 179496) and from UNAM (IN200312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Clapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clapp, C., Thebault, S., Macotela, Y., Moreno-Carranza, B., Triebel, J., Martínez de la Escalera, G. (2015). Regulation of Blood Vessels by Prolactin and Vasoinhibins. In: Diakonova, PhD, M. (eds) Recent Advances in Prolactin Research. Advances in Experimental Medicine and Biology, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-319-12114-7_4

Download citation

Publish with us

Policies and ethics