Skip to main content

Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry

  • Conference paper
  • First Online:
Large Deviations and Asymptotic Methods in Finance

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 110))

Abstract

In this paper, using a geometric method introduced in (Henry-Labordère Large Deviations and Asymptotic Methods in Finance (2015) [12]) and initiated by (Avellaneda et al. Risk Mag. (2002) [4]), we derive an asymptotic swaption implied volatility at the first-order for a general stochastic volatility Libor Market Model. This formula is useful to quickly calibrate a model to a full swaption matrix. We apply this formula to a specific model where the forward rates are assumed to follow a multi-dimensional CEV process correlated to a SABR process. For a caplet, this model degenerates to the classical SABR model and our asymptotic swaption implied volatility reduces naturally to the Hagan-al formula (Hagan et al. Willmott Mag. 88–108 (2002) [11]). The geometry underlying this model is the hyperbolic manifold \({\mathbb H}^{n+1}\) with n the number of Libor forward rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An at-the-money swaption (ATM) has a strike K equal to the spot rate \(s_{\alpha \beta }(0)\) and an out-of-the money (OTM) (resp. in-the-money (ITM)) swaption has \(K<s_{\alpha \beta }(0)\) (resp. \(K>s_{\alpha \beta }(0)\)).

  2. 2.

    We have used a predictor-corrector scheme with a Brownian bridge.

References

  1. Andersen, L., Andreasen, J.: Volatility skews and extensions of the Libor market model. Appl. Math. Financ. 7(1), 1–32 (2000)

    Article  MATH  Google Scholar 

  2. Andersen, L., Andreasen, J.: Volatile volatilities. Risk 15(12), 163–168 (2002)

    Google Scholar 

  3. Andersen, L., Brotherton-Ratcliffe, R.: Extended Libor market models with stochastic volatility. J. Comput. Financ. 9(1), 1–40 (2005)

    Google Scholar 

  4. Avellaneda, M., Boyer-Olson, D., Busca, J., Fritz, P.: Reconstructing the smile. Risk Mag. (2002)

    Google Scholar 

  5. Berestycki, H., Busca, J., Florent, I.: Asymptotics and calibration of local volatility models. Quant. Financ. 2, 31–44 (1998)

    MathSciNet  Google Scholar 

  6. Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Financ. 7, 127–154 (1996)

    Article  MathSciNet  Google Scholar 

  7. Brigo, D., Mercurio, F.: Interest Rate Models, Theory and Practice. Springer Finance. Springer, Berlin (2015)

    Google Scholar 

  8. Erdély, A.: Asymptotic Expansions. Dover, New York (1956)

    Google Scholar 

  9. Hull, J., White, A.: Forward rate volatilities swap rate volatilities, and the implementation of the Libor market model. J. Fixed Income 3, 46–62 (2000)

    Article  Google Scholar 

  10. Hull, J., White, A.: The pricing of options on assets with stochastic volatilities. J. Financ. 42, 281–300 (1987)

    Article  Google Scholar 

  11. Hagan, P., Kumar, D., Lesniewski, A., Woodward, D.: Managing smile risk. Willmott Mag. 84–108 (2002)

    Google Scholar 

  12. Henry-Labordère, P.: A General Asymptotic Implied Volatility for Stochastic Volatility Models. http://arxiv.org/abs/condmat/0504317

  13. Henry-Labordère, P.: Solvable local and stochastic volatility models: supersymmetric methods in option pricing. Quant. Financ. 7(5), 525–535 (2007)

    Article  MATH  Google Scholar 

  14. Jamshidian, F.: Libor and swap market models and measures. Financ. Stoch. 1(4), 293–330 (1997)

    Article  MATH  Google Scholar 

  15. Kawai, A.: A new approximate swaption formula in the Libor model market: an asymptotic approach. Appl. Math. Financ. 10(1), 49–74 (2003)

    Article  MATH  Google Scholar 

  16. Piterbarg, V.: A stochastic volatility forward Libor model with a term structure of volatility smiles, SSRN

    Google Scholar 

  17. Rebonato, A.: On the pricing implications of the joint lognormal assumption for the swaption and cap markets. J. Comput. Financ. 3(3), 5–26 (1999)

    Google Scholar 

  18. Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications, vol. I, II. Springer, New York (1985, 1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Henry-Labordère .

Editor information

Editors and Affiliations

Appendices

Appendix A: Heat Kernel Expansion

An short-time expansion of the conditional probability for a multi-dimensional Itô diffusion process can be achieved using the heat kernel expansion. In that purpose, the Kolmogorov equation is rewritten as the heat kernel equation on a (n)-dimensional Riemannian manifold \({\mathcal M}^{n}\) endowed with an Abelian connection as explained in [12, 13]. Let’s assume that our multi-dimensional stochastic equations (in \({\mathbb Q}^{\alpha \beta }\)) are written as

$$\begin{aligned}dx_\mu =b_\mu (t,x)dt+\sigma _\mu (t,x)dW_\mu \end{aligned}$$

with \(dW_\mu dW_\nu =\rho _{\mu \nu }(t)dt\). Then, the metric \(g_{\mu \nu }\) depends only on the diffusion terms \(\sigma _\mu \) and the connection \({\mathcal A}_\mu \) on the drift terms \(b_\mu \) as well

$$\begin{aligned} g_{\mu \nu }(t,x)= & {} 2 {\rho ^{\mu \nu }(t) \over \sigma _\mu (t,x) \sigma _\nu (t,x)}, \; \mu ,\nu =1,\ldots , n \;, \; \rho ^{\mu \nu } \equiv [\rho ^{-1}]_{\mu \nu }\end{aligned}$$
(5.1a)
$$\begin{aligned} {\mathcal A}_\alpha (t,x)= & {} \sum _{\mu =1}^n g_{\alpha \mu } {1 \over 2}\left( b_\mu (t,x)-\sum _{\nu =1}^{n+1} g^{-{1 \over 2}}\partial _\nu \left( g^{1/2}g^{\mu \nu }(t,x)\right) \right) ,\; \alpha =1,\ldots , n\nonumber \\ \end{aligned}$$
(5.1b)

with \(g(t,x) \equiv \det [g_{\mu \nu }(t,x)]\). In terms of these functions, the asymptotic solution to the Kolmogorov equation in the short-time limit is given by

$$\begin{aligned} p(x,t|x^0)={\sqrt{g(x)} \over (4\pi t)^{n \over 2}}\sqrt{\Delta (x,x^0)}\mathcal{P}(x,x^0)e^{-{\sigma (x,x^0) \over 2t}}\left( 1+\sum _{n=1}^\infty a_n(x,x^0)t^n \right) {,}\,t \rightarrow 0\nonumber \\ \end{aligned}$$
(5.2)
  • Here, \(\sigma (x,x^0)\) is the Synge function defined as

    $$\begin{aligned}\sigma (x,x^0)={d^2(x,x^0) \over 2} \end{aligned}$$

    The distance \(d(x,x^0)\) is defined as the minimizer of

    $$\begin{aligned}d(x,x^0)^2=\min _{C} \int _0^T g_{\mu \nu }(t=0,x) {dx_\mu (t) \over dt} {dx_\nu (t) \over dt} dt \end{aligned}$$

    and t parameterizes the curve \(\mathcal{C}(x,x^0)\) joining \(x(t=0)\equiv x^0\) and \(x(T)\equiv x\).

  • \(\Delta (x,x^0)\) is the so-called Van Vleck-Morette determinant

    $$\begin{aligned} \Delta (x,x^0)=g(0,x)^{-{1 \over 2}}\det (-{\partial ^2 \sigma (x,x^0) \over \partial x \partial x^0})g(0,x^0)^{-{1 \over 2}} \end{aligned}$$
    (5.3)

    with \(g(x)=\det [g_{\mu \nu }(0,x)]\)

  • \(\mathcal{P}(x,x^0)\) is the parallel transport of the Abelian connection along the geodesic \(\mathcal{C}(x,x^0)\) from the point x to \(x^0\).

    $$\begin{aligned} \mathcal{P}(x,x^0)=e^{-\int _{\mathcal{C}(x^0,x)} \mathcal{A}_\mu (t=0,x) dx^\mu } \end{aligned}$$
    (5.4)
  • The \(a_i(x,x^0)\) are smooth functions on \({\mathcal M}^{n}\) and depend on geometric invariants such as the scalar curvature R. More details can be found in [12].

Appendix B: Saddle-Point Method

The integration over \({\mathbb B}\) is obtained by using a saddle-point method which consists in approximating at the first order the integral \(\int f(x) e^{ \epsilon \phi (x)} dx \) in the limit \(\epsilon \) large by [8]

$$\begin{aligned}\int f(x) e^{ \epsilon \phi (x)} dx \sim _{\epsilon >>1}&f(x^*) e^{ \epsilon \phi (x^*)}\left( 1+ {1 \over \epsilon }\left( -{\partial _{\alpha \beta } f \over 2f} {A_{\alpha \beta } }\right. \right. \nonumber \\&+\left( {\partial _\alpha f \over 2f} \partial _{\beta \gamma \delta } \phi +{1 \over 8 } \partial _{\alpha \beta \gamma \delta } \phi \right) A_{\alpha \beta }A_{\gamma \delta } \\&\left. \left. -\,{\partial _{\alpha \beta \gamma } \phi \partial _{\delta \mu \nu } \phi \over 72} A_{\alpha \beta } A_{\gamma \delta } A_{\mu \nu }\right) \right) \end{aligned}$$

with \(A^{\alpha \beta }=[\partial _{\alpha \beta } \phi ]^{-1}\), \(dx \equiv \prod _{i=1}^n dx_i\) and \(x^*\) the saddle-point (which minimizes \(\phi (x)\)). Here we have used Einstein summation convention. This expression can be obtained by developing \(\phi (x)\) and f(x) in series around \(x^*\). The quadratic part in \(\phi (x)\) leads to a Gaussian integration over x which can be performed.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Henry-Labordère, P. (2015). Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry. In: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds) Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-11605-1_3

Download citation

Publish with us

Policies and ethics