Skip to main content

Mesoscale Simulations of Fluid-Fluid Interfaces

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘14
  • 2003 Accesses

Abstract

Fluid-fluid interfaces appear in numerous systems of academic and industrial interest. Their dynamics is difficult to track since they are usually deformable and of not a priori known shape. Computer simulations pose an attractive way to gain insight into the physics of interfaces. In this report we restrict ourselves to two classes of interfaces and their simulation by means of numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem. These are the immersed boundary method for the simulation of vesicles and capsules and the Shan-Chen pseudopotential approach for multi-component fluids in combination with a molecular dynamics algorithm for the simulation of nanoparticle stabilized emulsions. The advantage of these algorithms is their inherent locality allowing to develop highly scalable codes which can be used to harness the computational power of the currently largest available supercomputers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krüger, T., Frijters, S., Günther, F., Kaoui, B., Harting, J.: Numerical simulations of complex fluid-fluid interface dynamics. Eur. Phys. J. Spec. Topics 222, 177 (2013)

    Article  Google Scholar 

  2. Pozrikidis, C. (ed.) Modeling and Simulation of Capsules and Biological Cells. Chapman & Hall/CRC Mathematical Biology and Medicine Series. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  3. Suresh, S., Spatz, J., Mills, J., Micoulet, A., Dao, M., Lim, C., Beil, M., Seufferlein, M.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)

    Article  Google Scholar 

  4. Battaglia, L., Gallarate, M.: Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv. 9(5), 497–508 (2012)

    Article  Google Scholar 

  5. Fedosov, D., Pan, W., Caswell, B., Gompper, G., Karniadakis, G.: Predicting human blood viscosity in silico. Proc. Natl. Acad. Sci. 108(29), 11772 (2011)

    Article  Google Scholar 

  6. Hou, H., Bhagat, A., Chong, A., Mao, P., Tan, K., Han, J., Lim, C.: Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10(19), 2605–2613 (2010)

    Article  Google Scholar 

  7. Harting, J., Harvey, M., Chin, J., Venturoli, M., Coveney, P.V.: Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids. Phil. Trans. R. Soc. Lond. A 363, 1895–1915 (2005)

    Article  Google Scholar 

  8. Binks, B.: Particles as surfactants–similarities and differences. Cur. Opin. Colloid Interface Sci. 7(1–2), 21–41 (2002)

    Article  Google Scholar 

  9. Frijters, S., Günther, F., Harting, J.: Effects of nanoparticles and surfactant on droplets in shear flow. Soft Matter 8(24), 6542–6556 (2012)

    Article  Google Scholar 

  10. Ramsden, W.: Separation of solids in the surface-layers of solutions and ‘suspensions’. Proc. R. Soc. Lond. 72, 156 (1903)

    Article  Google Scholar 

  11. Pickering, S.: Emulsions. J. Chem. Soc. Trans. 91, 2001–2021 (1907)

    Article  Google Scholar 

  12. Stratford, K., Adhikari, R., Pagonabarraga, I., Desplat, J., Cates, M.: Colloidal jamming at interfaces: a route to fluid-bicontinuous gels. Science 309(5744), 2198–2201 (2005)

    Article  Google Scholar 

  13. Herzig, E., White, K., Schofield, A., Poon, W., Clegg, P.: Bicontinuous emulsions stabilized solely by colloidal particles. Nat. Mat. 6(12), 966–971 (2007)

    Article  Google Scholar 

  14. Succi, S.: The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  15. Aidun, C., Clausen, J.: Lattice-Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42, 439 (2010)

    Article  MathSciNet  Google Scholar 

  16. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)

    Article  Google Scholar 

  17. Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)

    Article  Google Scholar 

  18. Orlandini, E., Swift, M.R., Yeomans, J.M.: A lattice Boltzmann model of binary-fluid mixtures. Europhys. Lett. 32, 463 (1995)

    Article  Google Scholar 

  19. Dupin, M., Halliday, I., Care, C.: Multi-component lattice Boltzmann equation for mesoscale blood flow. J. Phys. A Math. Gen. 36, 8517 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peskin, C.: The immersed boundary method. Acta Numer. 11, 479 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaoui, B., Krüger, T., Harting, J.: How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8, 9246 (2012)

    Article  Google Scholar 

  22. Jansen, F., Harting, J.: From bijels to Pickering emulsions: a lattice Boltzmann study. Phys. Rev. E 83(4), 046707 (2011)

    Article  Google Scholar 

  23. Günther, F., Janoschek, F., Frijters, S., Harting, J.: Lattice Boltzmann simulations of anisotropic particles at liquid interfaces. Comput. Fluids 80, 184 (2013)

    Article  Google Scholar 

  24. Günther, F., Frijters, S., Harting, J.: Timescales of emulsion formation caused by anisotropic particles. Soft Matter 10, 4977 (2014)

    Article  Google Scholar 

  25. Bleibel, J., Domínguez, A., Günther, F., Harting, J., Oettel, M.: Hydrodynamic interactions induce anomalous diffusion under partial confinement. Soft Matter 10, 2945 (2014)

    Article  Google Scholar 

  26. Kim, E., Stratford, K., Cates, M.: Bijels containing magnetic particles: a simulation study. Langmuir 26(11), 7928 (2010)

    Article  Google Scholar 

  27. Joshi, A., Sun, Y.: Multiphase lattice Boltzmann method for particle suspensions. Phys. Rev. E 79, 066703 (2009)

    Article  Google Scholar 

  28. Ladd, A., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Groen, D., Henrich, O., Janoschek, F., Coveney, P., Harting, J.: Lattice-Boltzmann methods in fluid dynamics: Turbulence and complex colloidal fluids. In: Bernd Mohr, W.F. (ed.) Jülich Blue Gene/P Extreme Scaling Workshop 2011. Jülich Supercomputing Centre, 52425 Jülich, Apr 2011. FZJ-JSC-IB-2011-02, http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/

  30. Schmieschek, S., Narváez Salazar, A., Harting, J.: Multi relaxation time lattice Boltzmann simulations of multiple component fluid flows in porous media. In: Nagel, M.R.W., Kröner, D. (eds.) High Performance Computing in Science and Engineering’12, p. 39. Springer, Heidelberg (2013)

    Google Scholar 

  31. Geislinger, T., Eggart, B., Braunmüller, S., Schmid, L., Franke, T.: Separation of blood cells using hydrodynamic lift. Appl. Phys. Lett. 100, 183701 (2012)

    Article  Google Scholar 

  32. Krüger, T., Varnik, F., Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Krüger, T., Varnik, F., Raabe, D.: Particle stress in suspensions of soft objects. Phil. Trans. R. Soc. Lond. A 369, 2414 (2011)

    Article  MATH  Google Scholar 

  34. Krüger, T., Kaoui, B., Harting, J.: Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725 (2014)

    Article  Google Scholar 

  35. Ghosh, A., Harting, J., van Hecke, M., Siemens, A., Kaoui, B., Koning, V., Langner, K., Niessen, I., Rojas, J.P., Stoyanov, S., Dijkstra, M.: Structuring with anisotropic colloids. In: Proceedings of the Workshop Physics with Industry, Leiden, 17–21 Oct 2011. Stichting FOM (2011)

    Google Scholar 

  36. Wagner, A., Pagonabarraga, I.: Lees-Edwards boundary conditions for lattice Boltzmann. J. Stat. Phys. 107, 521 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Financial support is greatly acknowledged from NWO/STW (Vidi grant 10787 of J. Harting) and FOM/Shell IPP (09iPOG14 – “Detection and guidance of nanoparticles for enhanced oil recovery”). We thank the Gauss Center for Supercomputing and HLRS Stuttgart for the allocation of computating time on Hermit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Harting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Krüger, T., Frijters, S., Günther, F., Kaoui, B., Harting, J. (2015). Mesoscale Simulations of Fluid-Fluid Interfaces. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘14. Springer, Cham. https://doi.org/10.1007/978-3-319-10810-0_36

Download citation

Publish with us

Policies and ethics