Skip to main content

PageRank-Related Methods for Analyzing Citation Networks

  • Chapter
  • First Online:
Measuring Scholarly Impact

Abstract

A central question in citation analysis is how the most important or most prominent nodes in a citation network can be identified. Many different approaches have been proposed to address this question. In this chapter, we focus on approaches that assess the importance of a node in a citation network based not just on the local structure of the network but instead on the network’s global structure. For instance, rather than just counting the number of citations a journal has received, these approaches also take into account from which journals the citations originate and how often these citing journals have been cited themselves. The methods that we study are closely related to the well-known PageRank method for ranking web pages. We therefore start by discussing the PageRank method, and we then review the work that has been done in the field of citation analysis on similar types of methods. In the second part of the chapter, we provide a tutorial in which we demonstrate how PageRank calculations can be performed for citation networks constructed based on data from the Web of Science database. The Sci2 tool is used to construct citation networks, and MATLAB is used to perform PageRank calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an empirical analysis of the dangling nodes issue in the context of citation networks, see Yan and Ding (2011a).

  2. 2.

    In the context of citation networks, in addition to the typical value of 0.85 for the damping factor parameter, the value of 0.5 is also sometimes used. See Chen et al. (2007) for some further discussion.

  3. 3.

    See http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.2+Additional+Plugins

  4. 4.

    See http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.4+Memory+Allocation

References

  • Bergstrom, C. T. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College and Research Libraries News, 68(5), 314–316.

    Google Scholar 

  • Bollen, J., Rodriguez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.

    Article  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Article  Google Scholar 

  • Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8–15.

    Article  Google Scholar 

  • Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? Journal of the American Society for Information Science and Technology, 59(13), 2186–2188.

    Article  Google Scholar 

  • Ding, Y. (2011). Applying weighted PageRank to author citation networks. Journal of the American Society for Information Science and Technology, 62(2), 236–245.

    Article  Google Scholar 

  • Doreian, P. (1985). A measure of standing of journals in stratified networks. Scientometrics, 8(5–6), 341–363.

    Article  Google Scholar 

  • Doreian, P. (1987). A revised measure of standing of journals in stratified networks. Scientometrics, 11(1–2), 71–80.

    Article  Google Scholar 

  • Fiala, D. (2012). Time-aware PageRank for bibliographic networks. Journal of Informetrics, 6(3), 370–388.

    Article  Google Scholar 

  • Fiala, D., Rousselot, F., & JeĹľek, K. (2008). PageRank for bibliographic networks. Scientometrics, 76(1), 135–158.

    Article  Google Scholar 

  • Franceschet, M. (2010a). The difference between popularity and prestige in the sciences and in the social sciences: A bibliometric analysis. Journal of Informetrics, 4(1), 55–63.

    Article  Google Scholar 

  • Franceschet, M. (2010b). Journal influence factors. Journal of Informetrics, 4(3), 239–248.

    Article  MathSciNet  Google Scholar 

  • Franceschet, M. (2010c). Ten good reasons to use the Eigenfactor metrics. Information Processing and Management, 46(5), 555–558.

    Article  Google Scholar 

  • Franceschet, M. (2011). PageRank: Standing on the shoulders of giants. Communications of the ACM, 54(6), 92–101.

    Article  Google Scholar 

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178, 471–479.

    Article  Google Scholar 

  • Geller, N. L. (1978). On the citation influence methodology of Pinski and Narin. Information Processing and Management, 14(2), 93–95.

    Article  MATH  MathSciNet  Google Scholar 

  • González-Pereira, B., Guerrero-Bote, V. P., & Moya-AnegĂłn, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379–391.

    Article  Google Scholar 

  • Gualdi, S., Medo, M., & Zhang, Y. C. (2011). Influence, originality and similarity in directed acyclic graphs. EPL, 96(1), 18004.

    Article  Google Scholar 

  • Guerrero-Bote, V. P., & Moya-AnegĂłn, F. (2012). A further step forward in measuring journals’ scientific prestige: The SJR2 indicator. Journal of Informetrics, 6(4), 674–688.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  Google Scholar 

  • Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.

    Article  MATH  Google Scholar 

  • Langville, A. N., & Meyer, C. D. (2006). Google’s PageRank and beyond: The science of search engine rankings. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Leontief, W. W. (1941). The structure of American economy, 1919–1929. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Li, J., & Willett, P. (2009). ArticleRank: A PageRank-based alternative to numbers of citations for analysing citation networks. Aslib Proceedings, 61(6), 605–618.

    Article  Google Scholar 

  • Liebowitz, S. J., & Palmer, J. P. (1984). Assessing the relative impacts of economics journals. Journal of Economic Literature, 22(1), 77–88.

    Google Scholar 

  • Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing and Management, 44(2), 800–810.

    Article  Google Scholar 

  • Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the Web (Technical Report). Stanford InfoLab.

    Google Scholar 

  • Palacios-Huerta, I., & Volij, O. (2004). The measurement of intellectual influence. Econometrica, 72(3), 963–977.

    Article  MATH  Google Scholar 

  • Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12(5), 297–312.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.

    Article  Google Scholar 

  • Salancik, G. R. (1986). An index of subgroup influence in dependency networks. Administrative Science Quarterly, 31(2), 194–211.

    Article  Google Scholar 

  • Su, C., Pan, Y. T., Zhen, Y. N., Ma, Z., Yuan, J. P., Guo, H., …, & Wu, Y. S. (2011). PrestigeRank: A new evaluation method for papers and journals. Journal of Informetrics, 5(1), 1–13.

    Google Scholar 

  • Todorov, R. (1984). Determination of influence weights for scientific journals. Scientometrics, 6(2), 127–137.

    Article  Google Scholar 

  • Walker, D., Xie, H., Yan, K. H., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 2007, P06010.

    Article  Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2010). The relation between Eigenfactor, audience factor, and influence weight. Journal of the American Society for Information Science and Technology, 61(7), 1476–1486.

    Article  Google Scholar 

  • West, J. D., Bergstrom, T. C., & Bergstrom, C. T. (2010a). The Eigenfactor metrics: A network approach to assessing scholarly journals. College and Research Libraries, 71(3), 236–244.

    Article  Google Scholar 

  • West, J. D., Bergstrom, T. C., & Bergstrom, C. T. (2010b). Big Macs and Eigenfactor scores: Don’t let correlation coefficients fool you. Journal of the American Society for Information Science and Technology, 61(9), 1800–1807.

    Article  Google Scholar 

  • West, J. D., Jensen, M. C., Dandrea, R. J., Gordon, G. J., & Bergstrom, C. T. (2013). Author-level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community. Journal of the American Society for Information Science and Technology, 64(4), 787–801.

    Article  Google Scholar 

  • Wu, H., He, J., & Pei, Y. J. (2010). Scientific impact at the topic level: A case study in computational linguistics. Journal of the American Society for Information Science and Technology, 61(11), 2274–2287.

    Article  Google Scholar 

  • Yan, E., & Ding, Y. (2011a). The effects of dangling nodes on citation networks. In Proceedings of the 13th International Conference on Scientometrics and Informetrics, July 4–8, 2011, Durban, South Africa.

    Google Scholar 

  • Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing and Management, 47(1), 125–134.

    Article  Google Scholar 

  • Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P-Rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology, 62(3), 467–477.

    Google Scholar 

  • Zhou, Y. B., LĂĽ, L., & Li, M. (2012). Quantifying the influence of scientists and their publications: Distinguishing between prestige and popularity. New Journal of Physics, 14, 033033.

    Article  Google Scholar 

  • Ĺ»yczkowski, K. (2010). Citation graph, weighted impact factors and performance indices. Scientometrics, 85(1), 301–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludo Waltman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Waltman, L., Yan, E. (2014). PageRank-Related Methods for Analyzing Citation Networks. In: Ding, Y., Rousseau, R., Wolfram, D. (eds) Measuring Scholarly Impact. Springer, Cham. https://doi.org/10.1007/978-3-319-10377-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10377-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10376-1

  • Online ISBN: 978-3-319-10377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics