Skip to main content

Persister Cells in Biofilm Associated Infections

  • Chapter
  • First Online:
Biofilm-based Healthcare-associated Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 831))

Abstract

Persister cells are phenotypic variants of a bacterial population that display tolerance to killing by bactericidal antibiotics. In this chapter we discuss the formation of persisters and their role in biofilm associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amato SM, Brynildsen MP (2014) Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 9:e93110

    Article  PubMed Central  PubMed  Google Scholar 

  • Amato SM et al (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Ammons MC (2010) Anti-biofilm strategies and the need for innovations in wound care. Recent Pat Antiinfect Drug Discov 5:10

    Article  CAS  PubMed  Google Scholar 

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baba T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed Central  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622

    Article  CAS  PubMed  Google Scholar 

  • Bernier SP et al (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet ii:497

    Article  Google Scholar 

  • Brotz-Oesterhelt H et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11:1082

    Article  PubMed  Google Scholar 

  • Conlon BP et al (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton JW et al (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435

    Article  CAS  PubMed  Google Scholar 

  • Darouiche RO et al (1994) Vancomycin penetration into biofilm covering infected prostheses and effect on bacteria. J Infect Dis 170:720

    Article  CAS  PubMed  Google Scholar 

  • Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Groote VN et al (2009) Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening. FEMS Microbiol Lett 297:73

    Article  PubMed  Google Scholar 

  • Donegan NP, Cheung AL (2009) Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol 191:2795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8:e1000317

    Article  PubMed Central  PubMed  Google Scholar 

  • Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ (2008) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190:1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falla TJ, Chopra I (1998) Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother 42:3282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrell CM, Grossman AD, Sauer RT (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol 57:1750

    Article  CAS  PubMed  Google Scholar 

  • Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371

    Article  CAS  PubMed  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248

    Article  CAS  PubMed  Google Scholar 

  • Girgis HS, Harris K, Tavazoie S (2012) Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci U S A 109:12740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gristina AG, Hobgood CD, Webb LX, Myrvik QN (1987) Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8:423

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Lewis K, Vulić M (2008) The role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen S et al (2012) Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis. PLoS One 7:e39185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes F, Van Melderen L (2011) Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 46:386

    Article  CAS  PubMed  Google Scholar 

  • Helaine S et al (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204

    Article  CAS  PubMed  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson PJ, Levin BR (2013) Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 9:e1003123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaspy I et al (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001

    Article  PubMed  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13

    Article  CAS  PubMed  Google Scholar 

  • Keren I, Mulcahy LR, Lewis K (2012) Persister eradication: lessons from the world of natural products. Methods Enzymol 517:387

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Wood TK (2010) Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 391:209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JS et al (2011) Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob Agents Chemother 55:5380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirstein J et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1:37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebeaux D et al. (2014) pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis. doi 10.1093/infdis/jiu286

  • Leung V, Levesque CM (2012) A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194:2265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci U S A 108:13206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140

    Article  CAS  PubMed  Google Scholar 

  • Michel A et al (2006) Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol 188:5783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moker N, Dean CR, Tao J (2010) Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192:1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mulcahy LR, Burns JL, Lory S, Lewis K (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami K et al (2005) Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 242:161

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D et al (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norton JP, Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci U S A 80:4784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spoering AL, Vulic M, Lewis K (2006) GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54:1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsilibaris V, Maenhaut-Michel G, Van Melderen L (2006) Biological roles of the Lon ATP-dependent protease. Res Microbiol 157:701

    Article  CAS  PubMed  Google Scholar 

  • Viducic D et al (2006) Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol 50:349

    Article  CAS  PubMed  Google Scholar 

  • Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41:1352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou YN, Jin DJ (1998) The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proc Natl Acad Sci U S A 95:2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conlon, B.P., Rowe, S.E., Lewis, K. (2015). Persister Cells in Biofilm Associated Infections. In: Donelli, G. (eds) Biofilm-based Healthcare-associated Infections. Advances in Experimental Medicine and Biology, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-09782-4_1

Download citation

Publish with us

Policies and ethics