Skip to main content

Beyond Lysozyme: Antimicrobial Peptides Against Malaria

  • Chapter
  • First Online:
Human and Mosquito Lysozymes

Abstract

Antimicrobial peptides (AMPs) are short amino acidic sequences with less than 100 residues. They are the components of the innate immune system not only in humans but also in plants, insects, and primitive multicellular organisms. Their role is to counteract the microorganisms, which could be potentially pathogenic for the host. AMPs active against viruses, bacteria, fungi, and parasites have been described. Among the antiparasitic AMPs reported so far, some peptides affect Plasmodium development in different phases of the biological cycle, from asexual blood stages to sexual stages in the mosquito, where AMPs can block ookinetes viability or oocyst formation. AMPs with antimalarial activity derive from different organisms, especially insects, as well as amphibians. In malaria research, AMPs have been mainly proposed for the engineering of mosquitoes or parasites to reduce or interrupt the malaria parasite transmission. In this chapter, the different classes of antimalarial AMPs (defensins, cecropins, dermaseptins) or single peptides (scorpine, melittin, gambicin) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arrighi RB, Nakamura C, Miyake J et al (2002) Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malarias. Antimicrob Agents Chemother 46:2104–2110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bell A (2011) Antimalarial peptides: the long and the short of it. Curr Pharm Des 17:2719–2731

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blandin S, Moita LF, Köcher T et al (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3:852–856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boman HG, Wade D, Boman IA et al (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259:103–106

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  PubMed  CAS  Google Scholar 

  • Carballar-Lejarazú R, Rodríguez MH, De La Cruz Hernández-Hernández F et al (2008) Recombinant scorpine: a multifunctional antimicrobial peptide with activity against different pathogens. Cell Mol Life Sci 65:3081–3092

    Article  PubMed  Google Scholar 

  • Carter V, Hurd H (2010) Choosing anti-Plasmodium molecules for genetically modifying mosquitoes: focus on peptides. Trends Parasitol 26:582–590

    Article  PubMed  CAS  Google Scholar 

  • Carter V, Underhill A, Baber I et al (2013) Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 9:e1003790

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  PubMed  CAS  Google Scholar 

  • Conde R, Zamudio FZ, Rodríguez MH et al (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 471:165–168

    Article  PubMed  CAS  Google Scholar 

  • Dagan A, Efron L, Gaidukov L et al (2002) In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother 46:1059–1066

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dixit R, Sharma A, Patole MS et al (2008) Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi. Acta Trop 106:75–79

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Aguilar R, Xi Z et al (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2:e52

    Article  PubMed  PubMed Central  Google Scholar 

  • Efron L, Dagan A, Gaidukov L et al (2002) Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277:24067–24072

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Vega-Rodríguez J, Ghosh AK et al (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074–1077

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ghosh JK, Shaool D, Guillaud P et al (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem 272:31609–31616

    Article  PubMed  CAS  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Central Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Gwadz RW, Kaslow D, Lee JY et al (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57:2628–2633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herrera-Ortiz A, Martínez-Barnetche J, Smit N et al (2011) The effect of nitric oxide and hydrogen peroxide in the activation of the systemic immune response of Anopheles albimanus infected with Plasmodium berghei. Dev Comp Immunol 35:44–50

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA (1997) Immune responsiveness in vector insects. Proc Natl Acad Sci U S A 94:11152–11153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khadjavi A, Giribaldi G, Prato M (2010) From control to eradication of malaria: the end of being stuck in second gear? Asian Pac J Trop Med 3:412–420

    Article  Google Scholar 

  • Krugliak M, Feder R, Zolotarev VY et al (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44:2442–2451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meredith JM, Hurd H, Lehane MJ et al (2008) The malaria vector mosquito Anopheles gambiae expresses a suite of larval-specific defensin genes. Insect Mol Biol 17:103–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pierrot C, Adam E, Hot D et al (2007) Contribution of T cells and neutrophils in protection of young susceptible rats from fatal experimental malaria. J Immunol 178:1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Possani LD, Corona M, Zurita M et al (2002) From noxiustoxin to scorpine and possible transgenic mosquitoes resistant to malaria. Arch Med Res 33:398–404

    Article  PubMed  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richman AM, Dimopoulos G, Seeley D et al (1997) Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 16:6114–6119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MC, Zamudio F, Torres JA et al (1995) Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp Parasitol 80:596–604

    Article  PubMed  CAS  Google Scholar 

  • Shahabuddin M, Fields I, Bulet P et al (1998) Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp Parasitol 89:103–112

    Article  PubMed  CAS  Google Scholar 

  • Simard MJ, Watt DD (1990) Venoms and toxins. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 414–444

    Google Scholar 

  • Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40:387–397

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Hultmark D, Engström A et al (2009) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248 (1981). J Immunol 182:6635–6637

    PubMed  CAS  Google Scholar 

  • Vizioli J, Bulet P, Charlet M et al (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9:75–84

    Article  PubMed  CAS  Google Scholar 

  • Vizioli J, Bulet P, Hoffmann JA et al (2001a) Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 98:12630–12635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vizioli J, Richman AM, Uttenweiler-Joseph S et al (2001b) The defensin peptide of the malaria vector mosquito Anopheles gambiae: antimicrobial activities and expression in adult mosquitoes. Insect Biochem Mol Biol 31:241–248

    Article  PubMed  CAS  Google Scholar 

  • Wade D, Boman A, Wåhlin B et al (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A 87:4761–4765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshida S, Ioka D, Matsuoka H et al (2001) Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol 113:89–96

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah D’Alessandro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Alessandro, S., Tullio, V., Giribaldi, G. (2015). Beyond Lysozyme: Antimicrobial Peptides Against Malaria. In: Prato, M. (eds) Human and Mosquito Lysozymes. Springer, Cham. https://doi.org/10.1007/978-3-319-09432-8_7

Download citation

Publish with us

Policies and ethics