Skip to main content

A Generic Approach for Analysis of White-Light Interferometry Data via User-Defined Algorithms

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8582))

Included in the following conference series:

  • 2819 Accesses

Abstract

The non-destructive and automatic 3D surface analysis using white-light interferometry has very high demands on the required computing systems. This is due to both, the high volume of data that are collected and the tremendous computational power, required by algorithms which evaluate the data. Furthermore, material characteristics and environmental influences like temperature or ambient light have a not negligible effect on the scan procedure, such that the algorithmic approaches must be adjusted to assess the correct surface profile. Thus, to obtain the desired analysis results and to fulfill the computational requirements, the application developer has to consider the physical characteristics of the white-light interferometry process as well as the attributes of the computational platform used. This paper describes the generic computational module of a new framework for the white-light interferometry surface scanning procedure to address these problems. This framework allows a user-transparent automatic assessment and usage of available computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michelson, A.A.: On the application of interference methods to astronomical measurements. Philosophical Magazine Series 5 30(182), 1–21 (1890)

    Article  MATH  Google Scholar 

  2. Leach, R.: Optical Measurement of Surface Topography. Springer (2011)

    Google Scholar 

  3. Shilling, K.M.: Mesoscale Edge Characterization. Dissertation, Mechanical Engineering. Georgia Institute of Technology (March 2006)

    Google Scholar 

  4. Larkin, K.G.: Topics in Multi-dimensional Signal Demodulation. PhD thesis, The Faculty of Science in the University of Sydney (2000)

    Google Scholar 

  5. Kapusi, D., Machleidt, T., Franke, K.H., Jahn, R.: White light interferometry in combination with a nanopositioning and nanomeasuring machine (NPMM), vol. 6616, pp. 661607-1–661607-10 (2007)

    Google Scholar 

  6. Pacholik, A., Muller, M., Fengler, W., Machleidt, T., Franke, K.H.: GPU vs FPGA: Example Application on White Light Interferometry. In: 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig), pp. 481–486 (2011)

    Google Scholar 

  7. Schneider, M., Fey, D., Kapusi, D., Machleidt, T.: Performance comparison of designated preprocessing white light interferometry algorithms on emerging multi- and many-core architectures. Procedia Computer Science 4, 2037–2046 (2011)

    Article  Google Scholar 

  8. You, J., Kim, Y.J., Kim, S.W.: GPU-accelerated white-light scanning interferometer for large-area, high-speed surface profile measurements. International Journal of Nanomanufacturing 8(1), 31–39 (2012)

    Article  MathSciNet  Google Scholar 

  9. Hissmann, M.: Bayesian Estimation for White Light Interferometry. PhD thesis, Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany (2005)

    Google Scholar 

  10. Chen, D.J., Chiang, F.P., Tan, Y.S., Don, H.S.: Digital speckle-displacement measurement using a complex spectrum method. Appl. Opt. 32(11), 1839–1849 (1993)

    Google Scholar 

  11. Kim, S.W., Kim, G.H.: Thickness-Profile Measurement of Transparent Thin-Film Layers by White-Light Scanning Interferometry. Appl. Opt. 38(28), 5968–5973 (1999)

    Article  Google Scholar 

  12. Purde, A., Meixner, A., Schweizer, H., Zeh, T., Koch, A.: Pixel shader based real-time image processing for surface metrology. In: Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, IMTC 2004, vol. 2, pp. 1116–1119 (May 2004)

    Google Scholar 

  13. Sylwestrzak, M., Szkulmowski, M., Szlag, D., Targowski, P.: Real-time imaging for Spectral Optical Coherence Tomography with massively parallel data processing. Photonics Letters of Poland 2(3) (2010)

    Google Scholar 

  14. Heller, T., Fey, D., Rehak, M.: An auto-tuning approach for optimizing base operators for non-destructive testing applications on heterogeneous multi-core architectures. In: SORT (2013) (invited paper)

    Google Scholar 

  15. Schäfer, A., Fey, D.: LibGeoDecomp: A Grid-Enabled Library for Geometric Decomposition Codes. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 285–294. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.: DAGuE: A generic distributed DAG engine for High Performance Computing. Parallel Computing 38(1- 2), 37–51 (2012); Extensions for Next-Generation Parallel Programming Models.

    Google Scholar 

  17. Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Saengpatsa, N., Tomov, S., Dongarra, J.: Performance Portability of a GPU Enabled Factorization with the DAGuE Framework. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 395–402 (2011)

    Google Scholar 

  18. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G., Thibault, S., Namyst, R.: hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications. In: 2010 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 180–186 (2010)

    Google Scholar 

  19. Robinson, D.W.: Interferogram Analysis: Digital Fringe Pattern Measurement Techniques. Institute of Physics Publishing (1993)

    Google Scholar 

  20. Larkin, K.G.: Efficient nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. A, 832–843 (1996)

    Google Scholar 

  21. Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide, 1st edn. Addison-Wesley Professional (November 2002)

    Google Scholar 

  22. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schneider, M., Fey, D., Wenzel, K., Machleidt, T. (2014). A Generic Approach for Analysis of White-Light Interferometry Data via User-Defined Algorithms. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8582. Springer, Cham. https://doi.org/10.1007/978-3-319-09147-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09147-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09146-4

  • Online ISBN: 978-3-319-09147-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics