Skip to main content

Non-quadratic Stabilization for T-S Systems with Nonlinear Consequent Parts

  • Conference paper
Book cover Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

This paper deals with nonlinear systems, which are modeled by T-S fuzzy model containing nonlinear functions in the consequent part of the fuzzy IF-THEN rules. This will allow modeling a wider class of systems with smaller modeling errors. The consequent part of each rule is assumed to contain a linear part plus a sector-bounded nonlinear term. The proposed controller guarantees exponential convergence of states by utilizing a new non-quadratic Lyapunov function for Lyapunov stability analysis and Linear Matrix Inequality (LMI) formulation. Moreover, new relaxation methods are introduced for further reduction of conservativeness and maximizing the region of attractions. Numerical examples illustrate effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guerra, T.M., Bernal, M., Guelton, K., Labiod, S.: Non-quadratic local stabilization for continuous-time Takagi-Sugeno models. Fuzzy Sets and Systems 201, 40–54 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdelmalek, I., Golea, N., Hadjili, M.L.: A new fuzzy Lyapunov approach to non-quadratic stablization of Takagi-Sugeno fuzzy models. International Journal of Applied Mathematics and Computer Science 17(1), 39–51 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernal, M., Husek, P.: Non-quadratic performance design for Takagi-Sugeno fuzzy systems. International Journal of Applied Mathematics and Computer Science 15(3), 383–391 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Transaction on Fuzzy Systems 17(4), 911–922 (2009a)

    Article  Google Scholar 

  5. Sala, A.: On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annual Reviews in Control 33(1), 48–58 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bernal, M., Sala, A., Jaadari, A., Guerra, T.M.: Stability analysis of polynomial fuzzy models via polynomial fuzzy lyapunov functions. Fuzzy Sets and Systems 185(1), 5–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dong, J., Wang, Y., Yang, G.H.: Control synthesis of continuous-time t-s fuzzy systems with local nonlinear models. IEEE Transaction on System, Man and Cybernatics, B. Cybern. 39(5), 1245–1258 (2009)

    Article  Google Scholar 

  8. Dong, J., Wang, Y., Yang, G.H.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Transaction on System, Man and Cybernatics, B. Cybern. 40(6), 1447–1459 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dong, J.: H  ∞  and mixed H 2/H  ∞  control of discrete-time T-S fuzzy systems with local nonlinear models. Fuzzy Sets and Systems 164(1), 1–24 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems 9(2), 324–332 (2001)

    Article  Google Scholar 

  11. Henderson, H.V., Searle, S.R.: On deriving the inverse of a sum of matrices. SIAM Review 23(1), 53–60 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khalil, H.: Nonlinear Systems. Prentice Hall (2002)

    Google Scholar 

  13. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM Studies in Applied Mathematics, Philadelphia (1994)

    Google Scholar 

  14. L\(\ddot o\)fberg, J.: Yalmip: A toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan (2004)

    Google Scholar 

  15. Bernal, M., Guerra, T.M.: Strategies to exploit non-quadratic local stability analysis. International Journal of Fuzzy Systems 14(3), 372–379 (2012)

    MathSciNet  Google Scholar 

  16. Wang, H.O., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. on Fuzzy Systems 4(1), 14–23 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Moodi, H., Lauber, J., Guerra, T.M., Farrokhi, M. (2014). Non-quadratic Stabilization for T-S Systems with Nonlinear Consequent Parts. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics