Skip to main content

Interplay of Water and Nutrient Transport: A Whole-Plant Perspective

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 76))

Abstract

This review aims to summarise the many facets of how water flow in higher plants affects nutrient transport and vice versa. Initially, some theoretical background is given on physico-chemical concepts to describe fluxes and their (in)direct coupling, followed by a brief overview on some of the relevant methods (pressure probes, ZIM probe, MIFE technique, radioactive and stable isotopes, MRT flow imaging, heat balance technique, modelling of nutrient fluxes). This essay focusses on roots, on vascular tissues and on the whole-plant level, with only occasional in-depth reference to the molecular scale. Radial water and nutrient transport in roots are discussed in analogy to processes in mammalian epithelia, including a possible role of salt/water cotransporters for generating the “non-osmotic” component of root pressure. Moreover, the significance of low reflection coefficients for the coupling of water and solute transport in roots is critically addressed. Separate sections deal with interactions of water and nutrient transport in vascular tissue (xylem, phloem). Finally, a whole-plant perspective is taken; the significance of transpiration for plant nutrition in general, and for the nutrients N, Ca and K in particular, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson CJ, Ruiz LP, Mansfield TA (1992) Calcium in xylem sap and the regulation of its delivery to the shoot. J Exp Bot 43:1315–1324. doi:10.1093/jxb/43.10.1315

    CAS  Google Scholar 

  • Balling A, Zimmermann U (1990) Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe. Planta 182:325–338. doi:10.1007/BF02411382

    PubMed  CAS  Google Scholar 

  • Bell CW, Biddulph O (1963) Translocation of calcium. Exchange versus mass flow. Plant Physiol 38:610–614

    PubMed  CAS  PubMed Central  Google Scholar 

  • Benlloch-González M, Arquero O, Fournier JM et al (2008) K + starvation inhibits water-stress-induced stomatal closure. J Plant Physiol 165:623–630. doi:10.1016/j.jplph.2007.05.010

    PubMed  Google Scholar 

  • Benlloch-González M, Fournier JM, Benlloch M (2010) K + deprivation induces xylem water and K + transport in sunflower: evidence for a co-ordinated control. J Exp Bot 61:157–164. doi:10.1093/jxb/erp288

    PubMed  Google Scholar 

  • Bentrup FW (1979) Reception and transduction of electrical and mechanical stimuli. Encyclopedia Plant Physiol 7:42–70

    Google Scholar 

  • Biddulph O, Cory R, Biddulph S (1959) Translocation of calcium in the bean plant. Plant Physiol 34:512–519

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bramley H, Turner NC, Turner DW, Tyerman SD (2007) Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways. Plant Cell Environ 30:861–874. doi:10.1111/j.1365-3040.2007.01678.x

    PubMed  Google Scholar 

  • Bramley H, Ehrenberger W, Zimmermann U et al (2013) Non-invasive pressure probes magnetically clamped to leaves to monitor the water status of wheat. Plant Soil 369:257–268. doi:10.1007/s11104-012-1568-x

    CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534. doi:10.1016/j.tplants.2006.09.011

    PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2013) Flux measurements of cations using radioactive tracers. Methods Mol Biol Clifton NJ 953:161–170. doi:10.1007/978-1-62703-152-3_10

    CAS  Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114:341–368

    Google Scholar 

  • Ciancio V, Verhás J (1994) On the nonlinear generalizations of Onsager’s reciprocal relations. J Non-Equil Thermody 19:184–194

    Google Scholar 

  • Clarkson DT (1993) Roots and the delivery of solutes to the xylem. Philos Trans R Soc Lond B Biol Sci 341:5–17

    Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T et al (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    PubMed  CAS  Google Scholar 

  • Colmenero-Flores JM, Martínez G, Gamba G et al (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J Cell Mol Biol 50:278–292. doi:10.1111/j.1365-313X.2007.03048.x

    CAS  Google Scholar 

  • Conroy J, Hocking P (1993) Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Physiol Plant 89:570–576. doi:10.1111/j.1399-3054.1993.tb05215.x

    CAS  Google Scholar 

  • Cramer MD, Hawkins H-J, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24. doi:10.1007/s00442-009-1364-3

    PubMed  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D et al (2007) The Na + transporter AtHKT1;1 controls retrieval of Na + from the xylem in Arabidopsis. Plant Cell Environ 30:497–507. doi:10.1111/j.1365-3040.2007.01637.x

    PubMed  CAS  Google Scholar 

  • de Geijn SCV, Petit CM (1979) Transport of divalent cations. Cation exchange capacity of intact xylem vessels. Plant Physiol 64:954–958. doi:10.1104/pp. 64.6.954

    PubMed  PubMed Central  Google Scholar 

  • Deeken R, Geiger D, Fromm J et al (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344. doi:10.1007/s00425-002-0895-1

    PubMed  CAS  Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow a mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083. doi:10.1085/jgp.50.8.2061

    PubMed  CAS  PubMed Central  Google Scholar 

  • Engels C (1999) Regulation of xylem transport of calcium from roots to shoot of maize by growth-related demand. J Plant Nutr Soil Sci 162:287–294. doi:10.1002/(SICI)1522-2624(199906)162:3<287::AID-JPLN287>3.0.CO;2-N

    CAS  Google Scholar 

  • Enns LC, Canny MJ, McCully ME (2000) An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as the source of root pressure. Protoplasma 211:183–197. doi:10.1007/BF01304486

    CAS  Google Scholar 

  • Fournier JM, Roldán ÁM, Sánchez C et al (2005) K + starvation increases water uptake in whole sunflower plants. Plant Sci 168:823–829. doi:10.1016/j.plantsci.2004.10.015

    CAS  Google Scholar 

  • Fricke W (2004) Solute sorting in grass leaves. The transpiration stream. Planta 219:507–514. doi:10.1007/s00425-004-1262-1

    PubMed  CAS  Google Scholar 

  • Fritz M, Ehwald R (2011) Mannitol permeation and radial flow of water in maize roots. New Phytol 189:210–217. doi:10.1111/j.1469-8137.2010.03452.x

    PubMed  CAS  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M et al (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869. doi:10.1073/pnas.1009777108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gilliham M, Dayod M, Hocking BJ et al (2011) Calcium delivery and storage in plant leaves: exploring the link with water flow. J Exp Bot 62:2233–2250. doi:10.1093/jxb/err111

    PubMed  CAS  Google Scholar 

  • Gorska A, Ye Q, Holbrook NM, Zwieniecki MA (2008a) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148:1159–1167. doi:10.1104/pp. 108.122499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gorska A, Zwieniecka A, Holbrook NM, Zwieniecki MA (2008b) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228:989–998. doi:10.1007/s00425-008-0798-x

    PubMed  CAS  Google Scholar 

  • Guo S, Kaldenhoff R, Uehlein N et al (2007) Relationship between water and nitrogen uptake in nitrate- and ammonium-supplied Phaseolus vulgaris L. plants. J Plant Nutr Soil Sci 170:73–80. doi:10.1002/jpln.200625073

    CAS  Google Scholar 

  • Hartt CE (1970) Effect of potassium deficiency upon translocation of 14C in detached blades of sugarcane. Plant Physiol 45:183–187. doi:10.1104/pp. 45.2.183

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811. doi:10.1152/physrev.00038.2011

    PubMed  CAS  Google Scholar 

  • Herbette S, Cochard H (2010) Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiol 153:1932–1939. doi:10.1104/pp. 110.155200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Homblé F, Véry AA (1992) Coupling of water and potassium ions in K channels of the tonoplast of Chara. Biophys J 63:996–999

    PubMed  PubMed Central  Google Scholar 

  • Hsiao TC, Lauchli A (1986) Role of potassium in plant-water relations. Adv Plant Nutr 2:281–312

    Google Scholar 

  • Humble GD, Raschke K (1971) Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant Physiol 48:447–453. doi:10.1104/pp. 48.4.447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jacoby B (1979) Sodium recirculation and loss from Phaseolus vulgaris L. Ann Bot 43:741–744

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) Modelling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L.). J Exp Bot 42:1091–1103. doi:10.1093/jxb/42.9.1091

    CAS  Google Scholar 

  • Katou K, Taura T, Furumoto M (1987) A model for water transport in the stele of plant roots. Protoplasma 140:123–132. doi:10.1007/BF01273721

    Google Scholar 

  • Knipfer T, Fricke W (2010) Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). New Phytol 187:159–170. doi:10.1111/j.1469-8137.2010.03240.x

    PubMed  Google Scholar 

  • Knipfer T, Das D, Steudle E (2007) During measurements of root hydraulics with pressure probes, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high-pressure flowmeter. Plant Cell Environ 30:845–860. doi:10.1111/j.1365-3040.2007.01670.x

    PubMed  Google Scholar 

  • Kong X-Q, Gao X-H, Sun W et al (2011) Cloning and functional characterization of a cation-chloride cotransporter gene OsCCC1. Plant Mol Biol 75:567–578. doi:10.1007/s11103-011-9744-6

    PubMed  CAS  Google Scholar 

  • Lang A (1983) Turgor-regulated translocation. Plant Cell Environ 6:683–689. doi:10.1111/1365-3040.ep11589312

    Google Scholar 

  • Lee J, Holbrook NM, Zwieniecki MA (2012) Ion induced changes in the structure of bordered pit membranes. Front Plant Sci 3:55. doi:10.3389/fpls.2012.00055

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Li L, Luan S (2006) Intracellular K + sensing of SKOR, a Shaker-type K + channel from Arabidopsis. Plant J 46:260–268. doi:10.1111/j.1365-313X.2006.02689.x

    PubMed  CAS  Google Scholar 

  • Loo DD, Hirayama BA, Meinild AK et al (1999) Passive water and ion transport by cotransporters. J Physiol 518(Pt 1):195–202

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lüttge U (1975) Salt glands. In: Hall LJ, Baker DA (eds) Ion transport plant cells tissues. North Holland Publishing, Amsterdam, pp 335–376

    Google Scholar 

  • Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany. Springer, Berlin, pp 165–190

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Matimati I, Verboom GA, Cramer MD (2014) Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. J Exp Bot 65:159–168. doi:10.1093/jxb/ert367

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624. doi:10.1146/annurev.arplant.59.032607.092734

    PubMed  CAS  Google Scholar 

  • Metzner R, Schneider HU, Breuer U, Schroeder WH (2008) Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Plant Physiol 147:1774–1787. doi:10.1104/pp. 107.109215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Metzner R, Schneider HU, Breuer U et al (2010a) Tracing cationic nutrients from xylem into stem tissue of French bean by stable isotope tracers and cryo-secondary ion mass spectrometry. Plant Physiol 152:1030–1043. doi:10.1104/pp. 109.143776

    PubMed  CAS  PubMed Central  Google Scholar 

  • Metzner R, Thorpe MR, Breuer U et al (2010b) Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. Plant Cell Environ 33:1393–1407. doi:10.1111/j.1365-3040.2010.02157.x

    PubMed  CAS  Google Scholar 

  • Morillon R, Liénard D, Chrispeels MJ, Lassalles JP (2001) Rapid movements of plants organs require solute-water cotransporters or contractile proteins. Plant Physiol 127:720–723

    PubMed  CAS  PubMed Central  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, Jena

    Google Scholar 

  • Nardini A, Gascò A, Trifilò P et al (2007) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. J Exp Bot 58:2609–2615. doi:10.1093/jxb/erm105

    PubMed  CAS  Google Scholar 

  • Nardini A, Salleo S, Jansen S (2011) More than just a vulnerable pipeline: xylem physiology in the light of ion-mediated regulation of plant water transport. J Exp Bot 62:4701–4718. doi:10.1093/jxb/err208

    PubMed  CAS  Google Scholar 

  • Nardini A, Dimasi F, Klepsch M, Jansen S (2012) Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. Tree Physiol 32:1434–1441. doi:10.1093/treephys/tps107

    PubMed  CAS  Google Scholar 

  • Newman IA (2001) Ion in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14. doi:10.1046/j.1365-3040.2001.00661.x

    PubMed  CAS  Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego, CA

    Google Scholar 

  • Oertli JJ (1966) Active water transport in plants. Physiol Plant 19:809–817. doi:10.1111/j.1399-3054.1966.tb07067.x

    CAS  Google Scholar 

  • Palta JP, Stadelmann EJ (1980) On simultaneous transport of water and solute through plant cell membranes: evidence for the absence of solvent drag effect and insensitivity of the reflection coefficient. Physiol Plant 50:83–90. doi:10.1111/j.1399-3054.1980.tb02689.x

    CAS  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196. doi:10.1146/annurev.pp. 23.060172.001133

    Google Scholar 

  • Pedersen O, Sand-Jensen K (1993) Water transport in submerged macrophytes. Aquat Bot 44:385–406. doi:10.1016/0304-3770(93)90079-C

    Google Scholar 

  • Pedersen O, Sand-Jensen K (1997) Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ 20:117–123. doi:10.1046/j.1365-3040.1997.d01-12.x

    CAS  Google Scholar 

  • Peuke AD (2010) Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J Exp Bot 61:635–655. doi:10.1093/jxb/erp352

    PubMed  CAS  Google Scholar 

  • Peuke AD, Rokitta M, Zimmermann U et al (2001) Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ 24:491–503. doi:10.1046/j.1365-3040.2001.00704.x

    CAS  Google Scholar 

  • Pohl P, Saparov SM, Antonenko YN (1997) The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes. Biophys J 72:1711–1718

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quintero JM, Fournier JM, Ramos J, Benlloch M (1998) K + status and ABA affect both exudation rate and hydraulic conductivity in sunflower roots. Physiol Plant 102:279–284. doi:10.1034/j.1399-3054.1998.1020216.xJ

    CAS  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants: role of hydraulic conductivity and turgor. Plant Physiol 69:771–775

    PubMed  CAS  PubMed Central  Google Scholar 

  • Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen- and phosphorus-deficient cotton seedlings. Plant Physiol 89:264–268. doi:10.1104/pp. 89.1.264, http://dx.doi.org/10.1104/pp.89.1.264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Renninger HJ, Schäfer KVR (2012) Comparison of tissue heat balance- and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine. Front Plant Sci 3:103. doi:10.3389/fpls.2012.00103

    PubMed  PubMed Central  Google Scholar 

  • Ringoet A, Sauer G, Gielink AJ (1968) Phloem transport of calcium in oat leaves. Planta 80:15–20

    Google Scholar 

  • Rokitta M, Peuke AD, Zimmermann U, Haase A (1999) Dynamic studies of phloem and xylem flow in fully differentiated plants by fast nuclear-magnetic-resonance microimaging. Protoplasma 209:126–131. doi:10.1007/BF01415708

    PubMed  CAS  Google Scholar 

  • Rüger S, Ehrenberger W, Arend M et al (2010) Comparative monitoring of temporal and spatial changes in tree water status using the non-invasive leaf patch clamp pressure probe and the pressure bomb. Agric Water Manag 98:283–290. doi:10.1016/j.agwat.2010.08.022

    Google Scholar 

  • Schneider H, Zhu J, Zimmermann U (1997a) Xylem and cell turgor pressure probe measurements in intact roots of glycophytes: transpiration induces a change in the radial and cellular reflection coefficients. Plant Cell Environ 20:221–229. doi:10.1046/j.1365-3040.1997.d01-65.x

    Google Scholar 

  • Schneider H, Wistuba N, Miller B, Geßner P, Thürmer F, Melcher P, Meinzer F, Zimmermann U (1997b) Diurnal variation in the radial reflection coefficient of intact maize root determined with the xylem pressure probe. J Exp Bot 48:2045–2053. doi:10.1093/jxb/48.12.2045

    CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB et al (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66. doi:10.1038/nature11909

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulze-Till T, Kaufmann I, Sattelmacher B et al (2009) A 1H NMR study of water flow in Phaseolus vulgaris L. roots treated with nitrate or ammonium. Plant Soil 319:307–321. doi:10.1007/s11104-008-9871-2

    CAS  Google Scholar 

  • Schurr U, Schulze E-D (1995) The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.). Plant Cell Environ 18:409–420. doi:10.1111/j.1365-3040.1995.tb00375.x

    CAS  Google Scholar 

  • Sellin A, Ounapuu E, Karusion A (2010) Experimental evidence supporting the concept of light-mediated modulation of stem hydraulic conductance. Tree Physiol 30:1528–1532. doi:10.1093/treephys/tpq091

    PubMed  Google Scholar 

  • Shabala S, Pang J, Zhou M et al (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207. doi:10.1111/j.1365-3040.2008.01914.x

    PubMed  CAS  Google Scholar 

  • Shabala S, Shabala S, Cuin TA et al (2010) Xylem ionic relations and salinity tolerance in barley. Plant J Cell Mol Biol 61:839–853. doi:10.1111/j.1365-313X.2009.04110.x

    CAS  Google Scholar 

  • Shabala S, Cuin TA, Shabala L, Newman I (2012) Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique. Methods Mol Biol Clifton NJ 913:119–134. doi:10.1007/978-1-61779-986-0_7

    CAS  Google Scholar 

  • Shackel KA, Johnson RS, Medawar CK, Phene CJ (1992) Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions. J Am Soc Hortic Sci 117:351–356

    Google Scholar 

  • Smith DM, Allen SJ (1996) Measurement of sap flow in plant stems. J Exp Bot 47:1833–1844

    CAS  Google Scholar 

  • Steudle E (2000a) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    PubMed  CAS  Google Scholar 

  • Steudle E (2000b) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56. doi:10.1023/A:1026439226716

    CAS  Google Scholar 

  • Steudle E, Jeschke WD (1983) Water transport in barley roots: measurements of root pressure and hydraulic conductivity of roots in parallel with turgor and hydraulic conductivity of root cells. Planta 158:237–248. doi:10.1007/BF01075260

    PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788. doi:10.1093/jxb/49.322.775

    CAS  Google Scholar 

  • Tanner W, Beevers H (1990) Does transpiration have an essential function in long-distance ion transport in plants? Plant Cell Environ 13:745–750. doi:10.1111/j.1365-3040.1990.tb01089.x

    CAS  Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA 98:9443–9447. doi:10.1073/pnas.161279898

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant-cell biology. Annu Rev Plant Biol 50:447–472. doi:10.1146/annurev.arplant.50.1.447

    CAS  Google Scholar 

  • Trifilò P, Lo Gullo MA, Salleo S et al (2008) Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements. Tree Physiol 28:1505–1512

    PubMed  Google Scholar 

  • Trifilò P, Nardini A, Raimondo F et al (2011) Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants of Laurus nobilis. Funct Plant Biol 38:606–613

    Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737. doi:10.1038/nature02027

    PubMed  CAS  Google Scholar 

  • Van Ieperen W (2007) Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends Plant Sci 12:137–142. doi:10.1016/j.tplants.2007.03.001

    PubMed  Google Scholar 

  • Van Ieperen W, van Meeteren U, van Gelder H (2000) Fluid ionic composition influences hydraulic conductance of xylem conduits. J Exp Bot 51:769–776

    PubMed  Google Scholar 

  • Volkov VS, Zholkevich VN (1993) Exudation parameters depending on spatial orientation of root segments of Zea mays L. Doklady Akad Nauk 332:526–528

    CAS  Google Scholar 

  • Vreugdenhil D, Koot-Gronsveld EAM (1989) Measurements of pH, sucrose and potassium ions in the phloem sap of castor bean (Ricinus communis) plants. Physiol Plant 77:385–388. doi:10.1111/j.1399-3054.1989.tb05657.x

    CAS  Google Scholar 

  • Wang Y-Y, Hsu P-K, Tsay Y-F (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467. doi:10.1016/j.tplants.2012.04.006

    PubMed  CAS  Google Scholar 

  • Wegner LH (2012) Using the multifunctional xylem probe for in situ studies of plant water and ion relations under saline conditions. In: Shabala SN, Cuinn TA (eds) Salt tolerance—methods and protocols, vol 913, Methods in molecular biology., pp 35–66. doi:10.1007/978-1-61779-986-0_3

    Google Scholar 

  • Wegner LH (2014) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65:381–393. doi:10.1093/jxb/ert391

    PubMed  CAS  Google Scholar 

  • Wegner LH, De Boer AH (1997) Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling. Plant Physiol 115:1707–1719. doi:10.1104/pp. 115.4.1707, http://dx.doi.org/10.1104/pp.115.4.1707

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots (A Procedure to Isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels). Plant Physiol 105:799–813

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wegner LH, Zimmermann U (2002) On-line measurements of K + activity in the tensile water of the xylem conduit of higher plants. Plant J Cell Mol Biol 32:409–417

    CAS  Google Scholar 

  • Wegner LH, Zimmermann U (2009) Hydraulic conductance and K + transport into the xylem depend on radial volume flow, rather than on xylem pressure, in roots of intact, transpiring maize seedlings. New Phytol 181:361–373. doi:10.1111/j.1469-8137.2008.02662.x

    PubMed  CAS  Google Scholar 

  • Wegner LH, De Boer AH, Raschke K (1994) Properties of the K + inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+. J Membr Biol 142:363–379

    PubMed  CAS  Google Scholar 

  • Westhoff M, Reuss R, Zimmermann D et al (2009) A non-invasive probe for online-monitoring of turgor pressure changes under field conditions. Plant Biol 11:701–712. doi:10.1111/j.1438-8677.2008.00170.x

    PubMed  CAS  Google Scholar 

  • White PJ (1997) Cation channels in the plasma membrane of rye roots. J Exp Bot 48 Spec No:499–514. doi:10.1093/jxb/48.Special_Issue.499

    PubMed  CAS  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899. doi:10.1093/jexbot/52.358.891

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Bacon MA, Davies WJ (2007) Nitrate signalling to stomata and growing leaves: interactions with soil drying, ABA, and xylem sap pH in maize. J Exp Bot 58:1705–1716. doi:10.1093/jxb/erm021

    PubMed  CAS  Google Scholar 

  • Wolterbeek HT (1987) Cation exchange in isolated xylem cell walls of tomato. I. Cd2+ and Rb + exchange in adsorption experiments. Plant Cell Environ 10:39–44. doi:10.1111/j.1365-3040.1987.tb02077.x

    CAS  Google Scholar 

  • Ye Q, Holbrook M, Zwieniecki MA (2008) Cell-to-cell pathway dominates xylem-epidermis hydraulic connection in Tradescantia fluminensis (Vell. Conc.) leaves. Planta 227:1311–1319. doi:10.1007/s00425-008-0703-7

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1996) Molecular mechanisms of water transport. RG Landes Compagny, Austin, TX

    Google Scholar 

  • Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234:57–73. doi:10.1007/s00232-009-9216-y

    PubMed  CAS  Google Scholar 

  • Zeuthen T, MacAulay N (2012) Transport of water against its concentration gradient: fact or fiction? Wiley Interdiscip Rev Membr Transp Signal 1:373–381. doi:10.1002/wmts.54

    CAS  Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295. doi:10.1139/b78-274

    Google Scholar 

  • Zimmermann U, Steudle E (1978) Physical aspects of water relations of plant cells. Adv Bot Res 6:45–117

    Google Scholar 

  • Zimmermann U, Räde H, Steudle E (1969) Kontinuierliche Druckmessung in Pflanzenzellen. Naturwissenschaften 56:634. doi:10.1007/BF01185741

    Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615. doi:10.1111/j.1469-8137.2004.01083.x

    Google Scholar 

  • Zimmermann D, Reuss R, Westhoff M et al (2008) A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. J Exp Bot 59:3157–3167. doi:10.1093/jxb/ern171

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann U, Bitter R, Marchiori PER et al (2013) A non-invasive plant-based probe for continuous monitoring of water stress in real time: a new tool for irrigation scheduling and deeper insight into drought and salinity stress physiology. Theor Exp Plant Physiol 25:2–11. doi:10.1590/S2197-00252013000100002

    Google Scholar 

  • Zwieniecki MA, Melcher PJ, Michele Holbrook NM (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291:1059–1062. doi:10.1126/science.1057175

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof U. Zimmermann, Henningsdorf, for many stimulating discussions and for critical reading of the manuscript. Thanks are also due to Prof. Zimmermann and S. Rüger for providing diagrams showing the ZIM probe and a hitherto unpublished model experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars H. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wegner, L.H. (2015). Interplay of Water and Nutrient Transport: A Whole-Plant Perspective. In: Lüttge, U., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-08807-5_5

Download citation

Publish with us

Policies and ethics