Skip to main content

Abstract

Hospital acquired infections (HAI), also known as nosocomial infections, have a vast impact on patient and staff health and affect survival chances of patients with compromised immune system, elderly, and young children. Moreover, hospital environments are favoring the development of drug-resistant strains of bacteria, making treatment of such HAI more challenging. The Center of Disease Control estimates that one of the deadliest types of antibiotic-resistant bacteria, MRSA (methicillin-resistant Staphylococcus aureus), causes 19,000 death cases per year, whereas another superbug, Clostridium difficile, causes 500,000 incidents per year.

The natural medicinal and sanitizing properties of copper and its minerals were used throughout the ages by many civilizations. However, only recently have we started understanding the mechanisms of such bactericidal effects of copper. One of the latest research developments in this area is concerned with showing that metallic copper surfaces strongly reduce microbial surface-burden, both in laboratory settings and healthcare environments. Microbiologists and hygiene specialists are increasingly recognizing this unique antimicrobial property of metallic copper as a very promising novel tool for reducing HAI, which are known to spread through touching contaminated surfaces. Copper surfaces have universal microbe-inactivating properties against a wide variety of Gram-positive and Gram-negative microbes under moist (droplets of cell suspensions, mimicking splash-contamination) or dry (direct contact between cells and surfaces, mimicking touch surfaces) conditions.

This chapter reviews the molecular mechanisms underlying bactericidal properties of solid copper surfaces and factors that influence such processes: copper surface oxidation and corrosion, copper cell accumulation, copper alloy content and roughness, temperature, moisture, presence of chelators, osmotic stress, reactive oxygen species, cellular characteristics, cell wall structure, spores, genetic traits for copper resistance systems, anaerobiosis, viable but not culturable state (VBNC). Additionally, primary targets for metallic copper toxicity, DNA and lipids, are also included in discussion in this chapter.

Our understanding of the antimicrobial properties of metallic copper surfaces have made great strides in the last 5 years both under laboratories and healthcare conditions, highlighting safe, economical and sustainable application of metallic copper surfaces in hospital or any public settings for prevention of HAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCS:

Bathocuproine disulfonate

BTA:

Benzotriazole

C=C–C :

Allylic radicals

CFU:

Colony forming units

ComC:

Copper-induced outer membrane component

ComR:

Copper-induced repressor

CopA:

Copper exporter P-type ATPase

CopB:

Cytoplasmic copper and delivers it to the P1B-type ATPase

CopY:

Copper-responsive repressor

CopZ:

Cytoplasmic copper binding chaperone

CueP:

Periplasmic copper binding protein

CueR:

Copper response cytoplasmic MerR-family activator/repressor

CusCFBA:

Copper/Silver transporting efflux system

CusRS:

Periplasmic copper two-component system sensor

CycA:

d-cycloserine uptake permease

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediaminetetraacetic acid

FabR:

Repressor for unsaturated fatty acids biosynthesis

FAME:

Fatty acid methyl esters

GSH:

Glutathione

GSSG:

Glutathione disulfide

HAI:

Healthcare-acquired infections

ICP-MS:

Inductively coupled plasma mass spectrometry

L:

Lipid

L :

Lipid radical

LO :

Lipid alkoyl radicals

LOO :

Peroxyl radical

MDA:

Malondialdehyde

MerR:

Mercury resistance repressor

Pco:

Plasmid-borne copper resistance

PMF:

Proton motive force

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid-reactive substances

TetR:

Tetracycline repressor protein

Tris:

Tris(hydroxymethyl)aminomethane

VBNC:

Viable-But-Not-Culturable

References

  1. Albright LJ, Wilson EM (1974) Sub-lethal effects of several metallic salts—organic compounds combinations upon the heterotrophic microflora of a natural water. Water Res 8(2):101–105. doi:10.1016/0043-1354(74)90133-X

    Article  CAS  Google Scholar 

  2. Argüello JM, González-Guerrero M, Raimunda D (2011) Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 50:9940–9949

    Article  PubMed Central  PubMed  Google Scholar 

  3. Aurass P, Prager R, Flieger A (2011) EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13:3139–3148

    Article  PubMed  Google Scholar 

  4. Bittner O, Gal S, Pinchuk I, Danino D, Shinar H, Lichtenberg D (2002) Copper-induced peroxidation of liposomal palmitoyllinoleoylphosphatidylcholine (PLPC), effect of antioxidants and its dependence on the oxidative stress. Chem Phys Lipids 114:81–98

    Article  CAS  PubMed  Google Scholar 

  5. Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166

    Google Scholar 

  6. Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TSJ (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77, Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  7. Cervantes-Cervantes MP, Calderón-Salinas JV, Albores A, Muñoz-Sánchez JL (2005) Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res 103:229–248

    Article  CAS  PubMed  Google Scholar 

  8. Chalk AJ, Smith JF (1957) Catalysis of cyclohexene autoxidation by trace metals in non-polar media. Part 2. Metal salts in the presence of chelating agents. Trans Faraday Soc 53:1235

    Article  CAS  Google Scholar 

  9. Chalk AJ, Smith JF (1957) Catalysis of cyclohexene autoxidation by trace metals in non-polar media. Part 1.-Metal salts. Trans Faraday Soc 53:1214

    Article  CAS  Google Scholar 

  10. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  CAS  PubMed  Google Scholar 

  11. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  12. Copping C, Uri N (1968) Catalytic and inhibitory effects of metal chelates in autoxidation reaction. Discuss Faraday Soc 46:202, The Royal Society of Chemistry

    Article  Google Scholar 

  13. Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304

    Article  CAS  PubMed  Google Scholar 

  14. Cox MM, Keck JL, Battista JR (2010) Rising from the Ashes: DNA Repair in Deinococcus radiodurans. PLoS Genet 6:e1000815

    Google Scholar 

  15. Crichton RR, Pierre JL (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112

    Article  CAS  PubMed  Google Scholar 

  16. Dancer SJ (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 8:101–113

    Google Scholar 

  17. Dick RJ, Johnston HN, Wray JA (1973) A literature and technology search on the bacteriostatic and sanitizing properties of copper and copper alloy surfaces. INCRA REP, Columbus

    Google Scholar 

  18. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115 (Aruoma OIH (Ed)). OICA International Saint Lucia

    Google Scholar 

  19. Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2:80–87

    Google Scholar 

  20. Drucker H, Garland T, Wildung R (1979) Metabolic response of microbiota to chromium and other metals. In: Kharasch N (ed) Trace elements in health and disease. Raven, Raven, New York, pp 1–25

    Google Scholar 

  21. Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance–new insights and applications. Metallomics 3:1109–1118

    Article  CAS  PubMed  Google Scholar 

  22. Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106:1448–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Elguindi J, Moffitt S, Hasman H, Andrade C, Raghavan S, Rensing C (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria. Appl Microbiol Biotechnol 89:1963–1970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Elguindi J, Alwathnani HA, Rensing C (2012) Rapid inactivation of Cronobacter sakazakii on copper alloys following periods of desiccation stress. World J Microbiol Biotechnol 28:1837–1841

    Google Scholar 

  25. Espírito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986

    Article  PubMed  Google Scholar 

  26. Espírito Santo C, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76:1341–1348

    Article  PubMed Central  Google Scholar 

  27. Espírito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802, American Society for Microbiology (ASM)

    Article  PubMed  Google Scholar 

  28. Espírito Santo C, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 1:46–52

    Article  Google Scholar 

  29. Faúndez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:19, BioMed Central

    Article  PubMed Central  PubMed  Google Scholar 

  30. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed Central  PubMed  Google Scholar 

  31. Frankel EN (1980) Lipid oxidation. Prog Lipid Res 19:1–22 (Frankel EN (ed)). Pergamon Press, Bridgwater

    Google Scholar 

  32. Fraústo Da Silva J, Williams R (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn, Proteins. Oxford University Press, Oxford

    Google Scholar 

  33. Gould SWJ, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59:151–156, Springer

    Article  CAS  Google Scholar 

  34. Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908

    Google Scholar 

  35. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547, American Society for Microbiology (ASM)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Grey BE, Steck TR (2001) The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol 67:3866–3872

    Google Scholar 

  37. Gutierrez H, Portman T, Pershin V, Ringuette M (2013) Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers. J Appl Microbiol 114:680–687

    Article  CAS  PubMed  Google Scholar 

  38. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Huheey J, Keiter E, Keiter R, Medhi O (1993) Chapter 2 – The structure of the atom. In: Piro J (ed) Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins College Publishers, New York

    Google Scholar 

  41. Hyde SM, Verdin D (1968) Oxidation of methyl oleate induced by 60Co γ-radiation. Part 1. – Pure methyl oleate. Trans Faraday Soc 64:144

    Article  CAS  Google Scholar 

  42. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  CAS  PubMed  Google Scholar 

  43. Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708

    Article  CAS  PubMed  Google Scholar 

  44. Karpanen TJ, Casey AL, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Elliott TSJ (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33:3–9

    Article  CAS  PubMed  Google Scholar 

  45. Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Google Scholar 

  46. Kochi JK (1962) The mechanism of the copper salt catalysed reactions of peroxides. Tetrahedron 18:483–497

    Article  CAS  Google Scholar 

  47. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kuhn PJ (1983) Doorknobs: a source of nosocomial infection? Diagn Med 6(8):62–63

    Google Scholar 

  49. Liochev SI, Fridovich I (2002) The Haber-Weiss cycle – 70 years later: an alternative view. Redox Rep 7:55–57, author reply 59–60

    Article  CAS  PubMed  Google Scholar 

  50. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Marais F, Mehtar S, Chalkley L (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect 74:80–82

    Article  CAS  PubMed  Google Scholar 

  53. Mathews S, Hans M, Mücklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79:2605–2611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68:45–51

    Article  CAS  PubMed  Google Scholar 

  55. Mermod M, Magnani D, Solioz M, Stoyanov JV (2012) The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals 25:33–43

    Article  CAS  PubMed  Google Scholar 

  56. Metzler D (2003) Chapter 16 – Transition metals in catalysis and electron transport. In: Hayhurst J (ed) Biochemistry: the chemical reactions of living cells (Volume 1 and 2), 2nd edn. Academic, San Diego

    Google Scholar 

  57. Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49:191–195, Blackwell Publishing Ltd

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Michels HT, Wilks SA, Keevil CW (2003) The antimicrobial effects of copper alloy surfaces on the bacterium, E. coli 0157:H7. In: Lagos GE, Sahoo M, Camus J (eds) Proceedings of Copper 2003 – Cobre 2003, the 5th international conference, Santiago, pp 439–450

    Google Scholar 

  59. Michels HT, Wilks SA, Keevil CW (2004) Effects of copper alloy surfaces on the viability of bacterium, E. coli O157:H7. In: Hygenic coatings & surfaces. The Paint Research Association, Teddington

    Google Scholar 

  60. Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87:1875–1879, Springer, Berlin/ Heidelberg

    Article  CAS  PubMed  Google Scholar 

  61. Molteni C, Abicht HK, Solioz M (2010) Transition Metals in Catalysis and Electron Transport. Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76:4099–4101, American Society for Microbiology (ASM)

    Google Scholar 

  62. Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Nandakumar R, Espírito Santo C, Madayiputhiya N, Grass G (2011) Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 24:429–444

    Article  CAS  PubMed  Google Scholar 

  64. Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173:5054–5059

    Google Scholar 

  65. Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239–4244, American Society for Microbiology

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297, The Hospital Infection Society

    Article  CAS  PubMed  Google Scholar 

  67. Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73:2748–2750, American Society for Microbiology

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ochiai E-I (1986) Iron versus copper, II: principles and applications in bioinorganic chemistry. J Chem Educ 63:942

    Article  CAS  Google Scholar 

  69. Odermatt A, Suter H, Krapf R, Solioz M (1992) An ATPase operon involved in copper resistance by Enterococcus hirae. Ann N Y Acad Sci 671:484–486

    Article  CAS  PubMed  Google Scholar 

  70. Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    Article  CAS  PubMed  Google Scholar 

  72. Quaranta D, Krans T, Espírito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77:416–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Raimunda D, González-Guerrero M, Leeber BW, Argüello JM (2011) The transport mechanism of bacterial Cu+ −ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475

    Google Scholar 

  74. Reardon AC (2011) Discovering metals : a historical overview. In: Reardon AC (ed) Metallurgy for the non-metallurgist, 2nd edn. ASM International, Materials Park

    Google Scholar 

  75. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656

    Google Scholar 

  76. Repetto M, Semprine J, Boveris A (2012) Chemical mechanism, biological implications and analytical determination. In: Catala A (ed) Lipid peroxidation. InTech, Rijeka, pp 3–30. doi:10.5772/45943

  77. Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA, Michels HT, Schmidt MG (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479–486

    Article  PubMed  Google Scholar 

  78. Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products, vol 6, 6th edn. Wiley, Hoboken, pp 269–355

    Google Scholar 

  79. Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221

    Article  CAS  PubMed  Google Scholar 

  81. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Google Scholar 

  82. Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14

    Google Scholar 

  83. Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511

    Google Scholar 

  84. Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR (2009) Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase. FEMS Microbiol Lett 297:49–53

    Article  CAS  PubMed  Google Scholar 

  85. Uri N (1961) Physico-chemical aspects of antoxidation. In: Lundberg WO (ed) Autoxid antioxidants, vol I. Interscience, New York City, pp 55–106

    Google Scholar 

  86. Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77:6049–6059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76:5390–5401, American Society for Microbiology (ASM)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68:145–151

    Article  CAS  PubMed  Google Scholar 

  89. Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol 50:18–23

    Article  CAS  PubMed  Google Scholar 

  90. Weaver L, Noyce JO, Michels HT, Keevil CW (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J Appl Microbiol 109:2200–2205

    Google Scholar 

  91. Weber DJ, Rutala WA (2001) Use of metals as microbicides in preventing infections in healthcare. In: Block SS (ed) Disinfection, sterilization, and preservation, vol 9, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 415–30, Retrieved from http://books.google.com/books?hl=en&lr=&id=3f-kPJ17_TYC&oi=fnd&pg=PR11&dq=Disinfection,+Sterilisation+and+Preservation&ots=KlDnGx6QF5&sig=UvWes0-YQm6z9tN4mYD3Q6aN0Yo

    Google Scholar 

  92. Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62:522–525, Oxford University Press

    Article  CAS  PubMed  Google Scholar 

  93. Wilks SA, Michels H, Keevil CW (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105:445–454

    Article  CAS  PubMed  Google Scholar 

  94. Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93–98

    Article  PubMed  Google Scholar 

  95. Yoshida Y, Furuta S, Niki E (1993) Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta 1210:81–88

    Article  CAS  PubMed  Google Scholar 

  96. Zhu L, Elguindi J, Rensing C, Ravishankar S (2012) Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol 30:303–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Rensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Espírito Santo, C., German, N., Elguindi, J., Grass, G., Rensing, C. (2014). Biocidal Mechanisms of Metallic Copper Surfaces. In: Borkow, G. (eds) Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-08057-4_6

Download citation

Publish with us

Policies and ethics