Skip to main content

Meroterpenoids from Marine Microorganisms: Potential Scaffolds for New Chemotherapy Leads

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

Meroterpenoids, including several biologically active metabolites from marine microorganisms mainly fungi and actinomycete bacteria, represent promising structural scaffolds with not only diverse biological activities such as antimicrotubule, cytotoxic and antiproliferative but also different mechanisms of action. In this chapter, an overview on structural diversity and anticancer activity of mixed biogenesis terpenoid derivatives (meroterpenoids) from marine microorganisms is presented with highlight on individual examples of the most promising candidates in cancer chemotherapy and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    CAS  Google Scholar 

  2. Petit K, Biard J-F (2013) Marine natural products and related compounds as anticancer agents: an overview of their clinical status. Anticancer Agents Med Chem 13(4):603–631

    CAS  Google Scholar 

  3. Bergmann W, Feeney RJ (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges I. J Org Chem 16(6):981–987

    CAS  Google Scholar 

  4. Cuevas C, Pérez M, Martín MJ et al (2000) Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett 2(16):2545–2548

    CAS  Google Scholar 

  5. Rinehart KL, Holt TG, Fregeau NL et al (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 55(15):4512–4515

    CAS  Google Scholar 

  6. Rinehart KL, Holt TG, Fregeau NL et al (1991) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata [Erratum to document cited in CA113(9):75189d]. J Org Chem 56(4):1676

    CAS  Google Scholar 

  7. Wright AE, Forleo DA, Gunawardana GP et al (1990) Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 55(15):4508–4512

    CAS  Google Scholar 

  8. Bai RL, Paull KD, Herald CL et al (1991) Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem 266(24):15882–15889

    CAS  Google Scholar 

  9. Hirata Y, Uemura D (1986) Halichondrins—antitumor polyether macrolides from a marine sponge. Pure Appl Chem 58(5):701–710

    Google Scholar 

  10. Towle MJ, Salvato KA, Wels BF et al (2011) Eribulin mesylate induces irreversible mitotic blockade: implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions. Cancer Res 71(2):496–505

    CAS  Google Scholar 

  11. Bartlett N, Forero-Torres A, Rosenblatt J et al (2009) Complete remissions with weekly dosing of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in a phase I dose-escalation study in patients with relapsed or refractory Hodgkin lymphoma (HL) or systemic anaplastic large cell lymphoma (sALCL). J Clin Oncol 27(15s):8500

    CAS  Google Scholar 

  12. Pettit GR, Kamano Y, Herald CL et al (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109(22):6883–6885

    CAS  Google Scholar 

  13. Bhatnagar I, Kim S-K (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701

    CAS  Google Scholar 

  14. Gerwick WH, Fenner AM (2013) Drug discovery from marine microbes. Microb Ecol 65:800–806

    Google Scholar 

  15. Newman DJ, Hill RT (2006) New drugs from marine microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544

    CAS  Google Scholar 

  16. Hayashi Y, Nicholson B, Tanaka K et al (2005) Effect of the phenyl ring modification on the antitumor activity of anti-microtubule agent dehydrophenylahistin. Pept Sci 2004 (41th Japanese Peptide Symposium) 405–406

    CAS  Google Scholar 

  17. Kanoh K, Kohno S, Asari T et al (1997) (-)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett 7(22):2847–2852

    CAS  Google Scholar 

  18. Spear MA, LoRusso P, Tolcher AW et al (2007) A phase 1 dynamic accelerated titration dose escalation study of the vascular disrupting agent NPI-2358. J Clin Oncol 25(18s):14097

    CAS  Google Scholar 

  19. Yamazaki Y, Sumikura M, Hidaka K et al (2010) Anti-microtubule ‘plinabulin’ chemical probe KPU-244-B3 labeled both α- and β-tubulin. Bioorg Med Chem 18(9):3169–3174

    CAS  Google Scholar 

  20. Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42(3):355–357

    CAS  Google Scholar 

  21. Hamlin PA, Aghajanian C, Younes A et al (2009) First-in-human phase 1 study of the novel structure proteasome inhibitor NPI-0052. J Clin Oncol 27(15s):3516

    Google Scholar 

  22. Potts BC, Albitar MX, Anderson KC et al (2011) Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 11(3):254–284

    CAS  Google Scholar 

  23. Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8(12):536–544

    CAS  Google Scholar 

  24. Luesch H, Moore RE, Paul VJ et al (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910

    CAS  Google Scholar 

  25. Willimanson RT, Chapin EL, Carr AW et al (2000) New diffusion-edited NMR experiments to expedite the dereplication of known compounds from natural product mixtures. Org Lett 2(3):289–292

    CAS  Google Scholar 

  26. Rath CM, Janto B, Earl J et al (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6:1244–1256

    CAS  Google Scholar 

  27. Geris R, Simpson TJ (2009) Meroterpenoids produced by fungi. Nat Prod Rep 26:1063–1094

    CAS  Google Scholar 

  28. Shiomi K, Tomoda H, Otoguro K et al (1999) Meroterpenoids with various biological activities produced by fungi. Pure Appl Chem 71:1059–1064

    CAS  Google Scholar 

  29. Cornforth JW (1968) Terpene biosynthesis. Chem Br 4:102–106

    CAS  Google Scholar 

  30. Simpson TJ (1987) Applications of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites. Chem Soc Rev 16:123–160

    CAS  Google Scholar 

  31. De Rosa S, De Giulio A, Iodice C (1994) Biological effects of prenylated hydroquinones: structure-activity relationship studies in antimicrobial, brine shrimp, and fish lethality assays. J Nat Prod 57(12):1711–1716

    CAS  Google Scholar 

  32. Itoh T, Tokunaga K, Radhakrishnan EK et al (2012) Identification of a key prenyltransferase involved in biosynthesis of the most abundant fungal meroterpenoids derived from 3,5-dimethylorsellinic acid. Chembiochem 13(8):1132–1135

    Google Scholar 

  33. Saleh O, Haagen Y, Seeger K et al (2009) Prenyl transfer to aromatic substrates in the biosynthesis of aminocoumarins, meroterpenoids and phenazines: the ABBA prenyltransferase family. Phytochemistry 70:1728–1738

    Google Scholar 

  34. Sunassee SN, Davies-Coleman MT (2012) Cytotoxic and antioxidant marine prenylated quinones and hydroquinones. Nat Prod Rep 29:513–535

    Google Scholar 

  35. Li S-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    CAS  Google Scholar 

  36. Berrué F, McCulloch MWB, Kerr RG (2011) Marine diterpene glycosides. Bioorg Med Chem 19:6702–6719

    CAS  Google Scholar 

  37. Li Y-X, Himaya SWA, Kim S-K (2013) Triterpenoids of marine origin as anti-cancer agents. Molecules 18:7886–7909

    CAS  Google Scholar 

  38. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    CAS  Google Scholar 

  39. Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Google Scholar 

  40. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2(12):666–673

    CAS  Google Scholar 

  41. Gallagher KA, Fenical W, Jensen PR (2010) Hybrid isoprenoid secondary metabolite production in terrestrial and marine Actinomycetes. Curr Opin Biotechnol 21:794–800

    CAS  Google Scholar 

  42. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    CAS  Google Scholar 

  43. Liu H, Edrada-Ebel R, Ebel R et al (2009) Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula. J Nat Prod 72:1585–1588

    CAS  Google Scholar 

  44. Lu Z, Wang Y, Miao C et al (2009) Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus 094102. J Nat Prod 72:1761–1767

    CAS  Google Scholar 

  45. Mohamed IE, Gross H, Pontius A et al (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11(21):5014–5017

    CAS  Google Scholar 

  46. Mohamed IE, Kehraus S, Krick A et al (2010) Mode of action of epoxyphomalins A and B and characterization of related metabolites from the marine-derived fungus Paraconiothyrium sp. J Nat Prod 73:2053–2056

    Google Scholar 

  47. Lin X, Zhou X, Wang F et al (2012) A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample. Mar Drugs 10:106–115

    CAS  Google Scholar 

  48. Fang S-M, Cui C-B, Li C-W et al (2012) Purpurogemutantin and purpurogemutantidin, new drimenyl cyclohexenone derivatives produced by a mutant obtained by diethyl sulfate mutagenesis of a marine-derived Penicillium purpurogenum G59. Mar Drugs 10:1266–1287

    CAS  Google Scholar 

  49. Sassa T, Yoshikoshi H (1983) New terpene-linked cyclohexenone epoxides, macrophorin A, B and C, produced by the fungus caused Macrophoma fruit rot of apple. Agric Biol Chem 47(1):187–189

    CAS  Google Scholar 

  50. Fraga BM (2013) Natural sesquiterpenoids. Nat Prod Rep 30:1226–1264

    CAS  Google Scholar 

  51. Chen L, Li D-H, Cai S-X et al (2010) A new cytotoxic metabolite from a deep sea derived fungus, Phialocephala sp. Acta Pharm Sin 45(10):1275–1278

    CAS  Google Scholar 

  52. Belofsky GN, Jensen PR, Renner MK et al (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724

    CAS  Google Scholar 

  53. Cohen E, Koch L, Thu KM et al (2011) Novel terpenoids of the fungus Aspergillus insuetus isolated from the Mediterranean sponge Psammocinia sp. collected along the coast of Israel. Bioorg Med Chem 19:6587–6593

    Google Scholar 

  54. Cueto M, MacMillan JB, Jensen PR et al (2006) Tropolactones A-D, four meroterpenoids from a marine-derived fungus of the genus Aspergillus. Phytochemistry 67:1826–1831

    CAS  Google Scholar 

  55. Kitano M, Yamada T, Amagata T et al (2012) Novel pyridino-α-pyrone sesquiterpene type pileotin produced by a sea urchin-derived Aspergillus sp. Tetrahedron Lett 53:4192–4194

    CAS  Google Scholar 

  56. Eamvijarn A, Gomes NM, Dethoup T (2013) Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron 69:8583–8591

    CAS  Google Scholar 

  57. Liu D, Li X-M, Meng L et al (2011) Nigerapyrones A-H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J Nat Prod 74:1787–1791

    Google Scholar 

  58. Gao H, Zhou L, Li D et al (2013) New cytotoxic metabolites from the marine-derived fungus Penicillium sp. ZLN29. Helv Chim Acta 96:514–519

    CAS  Google Scholar 

  59. Li X, Choi HD, Kang JS et al (2003) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500

    CAS  Google Scholar 

  60. Son BW, Kim JC, Choi HD (2002) A radical scavenging farnesylhydroquinone from a marine-derived fungus Penicillium sp. Arch Pharm Res 25(1):77–79

    Google Scholar 

  61. Wang J-S, Groopman JD (1999) DNA damage by mycotoxins. Mutat Res 424:167–181

    CAS  Google Scholar 

  62. Kralj A, Kehraus S, Krick A et al (2006) Arugosins G and H: prenylated polyketides from the marine-derived fungus Emericella nidulans var. acristata. J Nat Prod 69:995–1000

    CAS  Google Scholar 

  63. Parvatkar RR, D’Souza C, Tripathi A et al (2009) Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus. Phytochemistry 70:128–132

    Google Scholar 

  64. Du L, Zhu T, Li L et al (2009) Cytotoxic sorbicillinoids and bisorbicillinoids from a marine-derived fungus Trichoderma sp. Chem Pharm Bull 57(2):220–223

    CAS  Google Scholar 

  65. Laurent D, Guella G, Roquebert MF et al (2000) Cytotoxins, mycotoxins and drugs from a new deuteromycete, Acremonium neo-caledoniae, from the southwestern lagoon of New Caledonia. Planta Med 66:63–66

    CAS  Google Scholar 

  66. Namikoshi M, Akano K, Meguro S et al (2001) A new macrocyclic trichothecene, 12,13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in Palau. J Nat Prod 64:396–398

    CAS  Google Scholar 

  67. Xu JZ, Takasaki A, Kobayashi H et al (2006) Four new macrocyclic trichothecenes from two strains of marine-derived fungi of the genus Myrothecium. J Antibiot 59:451–455

    CAS  Google Scholar 

  68. Amagata T, Rath C, Rigot JF et al (2003) Structures and cytotoxic properties of trichoverroids and their macrolide analogues produced by saltwater culture of Myrothecium verrucaria. J Med Chem 46:4342–4350

    CAS  Google Scholar 

  69. Wei H, Inada H, Hayashi A et al (2007) Prenylterphenyllin and its dehydroxyl analogs, new cytotoxic substances from a marine-derived fungus Aspergillus candidus IF10. J Antibiot 60(9):586–590

    CAS  Google Scholar 

  70. Cueto M, Jensen PR, Kauffman C et al (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    CAS  Google Scholar 

  71. Wang S, Li X-M, Teuscher F et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625

    Google Scholar 

  72. Almeida C, Hemberger Y, Schmitt SM et al (2012) Marilines A-C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem Eur J 18:8827–8834

    Google Scholar 

  73. Sun L-L, Shao C-L, Chen J-F et al (2012) New bisabolane sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from the sponge Xestospongia testudinaria. Bioorg Med Chem Lett 22:1326–1329

    CAS  Google Scholar 

  74. Kato H, Yoshida T, Tokue T et al (2007) Notoamides A-D: Prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew Chem Int Ed 46:2254–2256

    CAS  Google Scholar 

  75. Kato H, Yoshida T, Tokue T et al (2013) Notoamides A-D: prenylated indole alkaloids isolated from a marine-derived fungus, Aspergillus sp. Angew Chem Int Ed 52:7893–7909

    CAS  Google Scholar 

  76. Tsukamoto S, Kato H, Samizo M et al (2008) Notoamides F−K, prenylated indole alkaloids isolated from a marine-derived Aspergillus sp. J Nat Prod 71:2064–2067

    CAS  Google Scholar 

  77. Tsukamoto S, Kato H, Samizo M et al (2013) Correction to notoamides F−K, prenylated indole alkaloids isolated from a marine-derived Aspergillus sp. J Nat Prod 76:1233–1233

    CAS  Google Scholar 

  78. Cui C-B, Kakeya H, Okada G et al (1995) Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. J Antibiot (Tokyo) 48(11):1382–1384

    CAS  Google Scholar 

  79. Cui C-B, Kakeya H, Okada G et al (1996a) Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot (Tokyo) 49(6):527–533

    CAS  Google Scholar 

  80. Cui C-B, Kakeya H, Osada H (1996b) Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures. J Antibiot (Tokyo) 49(6):534–540

    CAS  Google Scholar 

  81. Cui C-B, Kakeya H, Osada H (1996c) Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J Antibiot (Tokyo) 49(8):832–835

    Google Scholar 

  82. Cui C-B, Kakeya H, Osada H (1996d) Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M Phase1. Tetrahedron 52(39):12651–12666

    CAS  Google Scholar 

  83. Cui C-B, Kakeya H, Osada H (1997) Novel mammalian cell cycle inhibitors, cyclotryprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 53(1):59–72

    CAS  Google Scholar 

  84. Jain HD, Zhang C, Zhou S et al (2008) Synthesis and structure-activity relationship studies on tryprostatin A, an inhibitor of breast cancer resistance protein. Bioorg Med Chem 16:4626–4651

    CAS  Google Scholar 

  85. Kondoh M, Usui T, Mayumi T et al (1998) Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ. J Antibiot (Tokyo) 51(8):801–804

    CAS  Google Scholar 

  86. Sanz-Cervera JF, Stocking EM, Usui T et al (2000) Synthesis and evaluation of microtubule assembly inhibition and cytotoxicity of prenylated derivatives of cyclo-L-Trp-L-Pro. Bioorg Med Chem 8:2407–2415

    CAS  Google Scholar 

  87. Wang F, Fang Y, Zhu T et al (2008) Seven new prenylated indole diketopiperazine alkaloids from holothurians-derived fungus Aspergillus fumigatus. Tetrahedron 64:7986–7991

    Google Scholar 

  88. Zhang M, Wang W-L, Fang Y-C et al (2008) Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J Nat Prod 71:985–989

    CAS  Google Scholar 

  89. Gomes NM, Dethoup T, Singburaudom N et al (2012) Eurocristatine, a new diketopiperazine dimer from the marine sponge-associated fungus Eurotium cristatum. Phytochemistry Lett 5:718–720

    CAS  Google Scholar 

  90. Kimoto K, Aoki T, Shibata Y et al (2007) Structure-activity relationships of neoechinulin A analogues with cytoprotection against peroxynitrite-induced PC12 cell death. J Antibiot 60(10):614–621

    CAS  Google Scholar 

  91. Wijesekara I, Li Y-X, Vo T-S et al (2013) Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem 48:68–72

    CAS  Google Scholar 

  92. Cui C-M, Li X-M, Li C-S et al (2010) Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73:729–733

    Google Scholar 

  93. Smetanina OF, Kalinovsky AI, Khudyakova YV et al (2007) Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. J Nat Prod 70:906–909

    CAS  Google Scholar 

  94. Afiyatullov SS, Kuznetsova TA, Isakov VV et al (2000) New diterpenic altrosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod 63:848–850

    CAS  Google Scholar 

  95. Afiyatullov SS, Kuznetsova TA, Isakov VV et al (2005) New diterpenic altrosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod 68:1308

    CAS  Google Scholar 

  96. Bellavita N, Bernassau J-M, Ceccherelli P et al (1980) Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. 68. An unusual solvent dependence of the carbon-13 nuclear magnetic resonance spectral features of some glycosides as studied by relaxation-time measurements. J Am Chem Soc 102:17–20

    CAS  Google Scholar 

  97. Cagnoli-Bellavita N, Cecherelli P, Ribaldi M et al (1969) Virescenoside A and virescenoside B, new altroside metabolites of Oospora virescens. Gazz Chim Ital 99:1354–1363

    CAS  Google Scholar 

  98. Cagnoli-Bellavita N, Ceccherelli P, Mariani R et al (1970) Structure du virescenoside C, nouveau metabolite de Oospora virescens. Eur J Biochem 15:356–359

    Google Scholar 

  99. Afiyatullov SS, Kalinovsky AI, Kuznetsova TA et al (2002) New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod 65:641–644

    CAS  Google Scholar 

  100. Afiyatullov SS, Kalinovsky AI, Kuznetsova TA et al (2004) New glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. J Nat Prod 67:1047–1051

    CAS  Google Scholar 

  101. Afiyatullov SS, Kalinovsky AI, Pivkin MV et al (2006) New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. Nat Prod Res 20(10):902–908

    Google Scholar 

  102. Lu Z, Zhu H, Fu P et al (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73:911–914

    CAS  Google Scholar 

  103. Cho JY, Kwon HC, Williams PG et al (2006) Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Org Lett 8(12):2471–2474

    CAS  Google Scholar 

  104. Pathirana C, Jensen PR, Fenical W (1992) Marinone and debromomarinone: antibiotic sesquiterpenoid naphthoquinones of a new structure class from a marine bacterium. Tetrahedron Lett 33(50):7663–7666

    CAS  Google Scholar 

  105. Hardt IH, Jensen PR, Fenical W (2000) Neomarinone, and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Lett 41:2073–2076

    CAS  Google Scholar 

  106. Kalaitzis JA, Hamano Y, Nilsen G et al (2003) Biosynthesis and structural revision of neomarinone. Org Lett 5(23):4449–4452

    CAS  Google Scholar 

  107. Suárez RM, Martínez MM, Sarandeses LA (2007) Synthetic studies on neomarinone: practical and efficient stereoselective synthesis of the side chain. Tetrahedron Lett 48:6493–6495

    CAS  Google Scholar 

  108. Peña-López M, Martínez MM, Sarandeses LA et al (2009) Total synthesis of ( + )-neomarinone. Chemistry 15(4):910–916

    CAS  Google Scholar 

  109. Shiomi K, Nakamura H, Iinuma H et al (1986) Structures of new antibiotics napyradiomycins. J Antibiot (Tokyo) 39(4):494–501

    CAS  Google Scholar 

  110. Soria-Mercado IE, Jensen PR, Fenical W et al (2004) 3,4a-Dichloro-10a-(3-chloro-6-hydroxy-2,2,6-trimethylcyclohexylmethyl)-6,8-dihydroxy-2,2,7-trimethyl-3,4,4a,10a-tetrahydro-2H-benzo[g]chromene-5,10-dione. Acta Cryst E60:o1627-o1629

    CAS  Google Scholar 

  111. Soria-Mercado IE, Prieto-Davo A, Jensen PR et al (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68:904–910

    CAS  Google Scholar 

  112. Winter JM, Moore BS (2007) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284(28):18577–18581

    CAS  Google Scholar 

  113. Bernhardt P, Okino T, Winter JM et al (2011) A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. J Am Chem Soc 133(12):4268–4270

    CAS  Google Scholar 

  114. Wu Z, Li S, Li J et al (2013) Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs 11:2113–2125

    CAS  Google Scholar 

  115. Motohashi K, Sue M, Furihata K et al (2008) Terpenoids produced by actinomycetes: napyradiomycins from Streptomyces antimycoticus NT17. J Nat Prod 71:595–601

    CAS  Google Scholar 

  116. Fukuda DS, Mynderse JS, Baker PJ et al (1990) A80915, a new antibiotic complex produced by Streptomyces aculeolatus: discovery, taxonomy, fermentation, isolation, characterization, and antibacterial evaluation. J Antibiot (Tokyo) 43(6):623–633

    CAS  Google Scholar 

  117. Haste NM, Farnaes L, Perera VR et al (2011) Bactericidal kinetics of marine-derived napyradiomycins against contemporary methicillin-resistant Staphylococcus aureus. Mar Drugs 9:680–689

    CAS  Google Scholar 

  118. Hu Y, MacMillan JB (2011) Erythrazoles A-B, cytotoxic benzothiazoles from a marine-derived Erythrobacter sp. Org Lett 13(24):6580–6583

    CAS  Google Scholar 

  119. Hu Y, Legako AG, Espindola APDM et al (2012) Erythrolic acids A−E, meroterpenoids from a marine-derived Erythrobacter sp. J Org Chem 77:3401−3407

    CAS  Google Scholar 

  120. Kondratyuk TP, Park E-J, Yu R et al (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451–464

    Google Scholar 

  121. Imai S, Furihata K, Hayakawa Y et al (1989) Lavanducyanin, a new antitumor substance produced by Streptomyces sp. J Antibiot (Tokyo) 42(7):1196–1198

    CAS  Google Scholar 

  122. Graber MA, Gerwick WH (1998) Kalkipyrone, a toxic γ-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. J Nat Prod 61:677–680

    Google Scholar 

  123. Raju R, Piggott AM, Huang X-C et al (2011) Nocardioazines: a novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein. Org Lett 13(10):2770–2773

    Google Scholar 

  124. Zhang Q, Mándi A, Li S et al (2012) N-N-Coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur J Org Chem 27:5256–5262

    CAS  Google Scholar 

  125. Ding L, Münch J, Goerls H et al (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 15(20):6685–6687

    CAS  Google Scholar 

  126. Ding L, Maier A, Fiebig H-H et al (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9:4029–4031

    Google Scholar 

  127. López JMS, Insua MM, Baz JP et al (2003) New cytotoxic indolic metabolites from a marine Streptomyces. J Nat Prod 66:863–864

    Google Scholar 

  128. Renner MK, Shen Y-C, Cheng X-C et al (1999) Cyclomarins A-C, new anti-inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276

    CAS  Google Scholar 

  129. Genovese S, Curini M, Epifano F (2009) Chemistry and biological activity of azoprenylated secondary metabolites. Phytochemistry 70(9):1082–1091

    CAS  Google Scholar 

  130. Schultz AW, Oh D-C, Carney JR et al (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516

    CAS  Google Scholar 

  131. Kwon HC, Espindola APDM, Park J-S et al (2010) Nitropyrrolins A-E, cytotoxic farnesyl-α-nitropyrroles from a marine-derived bacterium within the actinomycete family Streptomycetaceae. J Nat Prod 73:2047–2052

    CAS  Google Scholar 

  132. Macherla VR, Liu J, Bellows C et al (2005) Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783

    CAS  Google Scholar 

  133. Takahashi A, Kurasawa S, Ikeda D et al (1989a) Altemicidin, a new acaricidal and antitumor substance. I. Taxonomy, fermentation, isolation and physic-chemical and biological properties. J Antibiot (Tokyo) 42(11):1556–1561

    CAS  Google Scholar 

  134. Takahashi A, Ikeda D, Nakamura H et al (1989b) Altemicidin, a new acaricidal and antitumor substance. II. Structure determination. J Antibiot (Tokyo) 42(11):1562–1566

    CAS  Google Scholar 

  135. Charan RD, Schlingmann G, Janso J et al (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67:1431–1433

    CAS  Google Scholar 

  136. Gourdeau H, McAlpine JB, Ranger M et al (2008) Identification, characterization and potent antitumor activity of ECO-4601, a novel peripheral benzodiazepine receptor ligand. Cancer Chemother Pharmacol 61:911–921

    CAS  Google Scholar 

  137. Bertomeu T, Zvereff V, Ibrahim A et al (2010) TLN-4601 peripheral benzodiazepine receptor (PBR/TSPO) binding properties do not mediate apoptosis but confer tumor-specific accumulation. Biochem Pharmacol 80:1572–1579

    Google Scholar 

  138. Kavan P, Melnychuk D, Langleben A et al (2007) Phase I study of ECO-4601, a novel Ras pathway inhibitor. J Clin Oncol 24(18):14128

    Google Scholar 

  139. Boufaied N, Wioland MMA, Gourdeau H (2010) TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation. Anticancer Drugs 21(5):543–552

    CAS  Google Scholar 

  140. Campbell PM, Boufaied N, Fiordalisi JJ et al (2010) TLN-4601 suppresses growth and induces apoptosis of pancreatic carcinoma cells through inhibition of Ras-ERK MAPK signaling. J Mol Signal 5:18

    Google Scholar 

  141. Mason W (2008) Efficacy study of TLN-4601 in patients with Recurring Glioblastoma Multiforme. NCT00730262

    CAS  Google Scholar 

  142. Okumura H, Kobaru S (Bristol-Meyers Squibb Co.) Compound produced by a strain of Micromonospora. U.S. Patent 5,541, 181, 30 July 1996

    CAS  Google Scholar 

  143. Igarashi Y, Miyanaga S, Onaka H et al (2005) Revision of the structure assigned to the antibiotic BU-4664 L from Micromonopora. J Antibiot 58(5):350–352

    CAS  Google Scholar 

  144. Wei R-B, Xi T, Li J et al (2011) Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Mar Drugs 9:359–36827

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Program and national funds through FCT—Foundation for Science and Technology, under the project PEst-C/MAR/LA0015/2013”, and by the Project MARBIOTECH (reference NORTE-07-0124-FEDER-000047) within the SR&TD Integrated Program MARVALOR-Building research and innovation capacity for improved management and valorization of marine resources, supported by the Programa Operacional Regional do Norte (ON.2-O Novo Norte) and by the European Regional Development Fund. Nelson G. M. Gomes thanks Fundação para a Ciência e Tecnologia (FCT) for the scholarship (SFRH/BD/65671/2009) supported by the European Social Fund (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anake Kijjoa Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes, N., Buttachon, S., Kijjoa, A. (2015). Meroterpenoids from Marine Microorganisms: Potential Scaffolds for New Chemotherapy Leads. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_16

Download citation

Publish with us

Policies and ethics