Skip to main content

Neurally Based Acoustic and Visual Design

  • Chapter
  • First Online:
Acoustics, Information, and Communication

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 1758 Accesses

Abstract

Manfred Schroeder’s ideas concerning acoustics, auditory percepts and preferences, and acoustic design had profound influences on the development of Yoichi Ando’s theory of architectural acoustics. Building on Schroeder’s theoretical frameworks, over subsequent decades Ando formulated a systematic theory of architectural acoustics design that incorporates acoustics (the structure of sound and how it propagates through an enclosed space), psychoacoustical models of auditory percepts and listener preferences (what we hear, which perceptual attributes are most important for the design of enclosed spaces, what we like to hear, which percepts are most important to our overall satisfaction, how individualized are these preferences), and strategies for optimal design (how a design process can harness psychoacoustical knowledge in order to optimize listener preferences).

In the last two decades, Ando’s theory has taken “a neural turn” in which monaural and binaural percepts are grounded respectively in putative central auditory autocorrelation and cross-correlation representations. Experimentally, Ando and co-workers have identified some observable neural correlates of relevant auditory percepts and preferences (e.g., EEG and MEG response latency patterns, spatial extent and temporal persistence of alpha rhythms, hemispheric lateralizations). In theory, the identification of neurophysiological signs of listener satisfaction permits neurally driven design processes that optimize acoustics such that neural processes responsible for listener satisfaction are fulfilled. Finally, the same battery of psychophysical methods, correlation-based representations, and neurophysiological experiments has been applied to problems of visual percepts and preferences. The visual results suggest deep similarities with auditory percepts. These many considerations lead to an integrative theory of spatial and temporal design.

Note from Peter Cariani: I stood in for Yoichi Ando at the Manfred R. Schroeder Memorial Session at the 116th ASA Meeting, Seattle, USA, May 2011 because, due to illness, he had to be hospitalized in Japan a few days before. I also served as Guest Editor of the book, Auditory and Visual Sensations, Springer-Verlag, NY, 2009, and I am honored to contribute here in a similar capacity. In reading this chapter, unless otherwise noted, all first-person perspectives, singular and plural, refer to Ando and his colleagues and not to me.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroeder, M.R.: Architectural acoustics. Science 151, 1355–1359 (1966)

    Article  ADS  Google Scholar 

  2. Ando, Y., Cariani, P.: Auditory and Visual Sensations. Springer, New York (2009)

    Google Scholar 

  3. Damaske, P.: Subjektive Untersuchungen von Schallfeldern. Acustica 19, 199–213 (1967)

    Google Scholar 

  4. Damaske, P., Ando, Y.: Interaural cross-correlation for multichannel loudspeaker reproduction. Acustica 27, 232–238 (1972)

    Google Scholar 

  5. Schroeder, M.R., Gottlob, D., Siebrasse, K.F.: Comparative study of European concert halls: correlation of subjective preference with geometric and acoustic parameters. J. Acoust. Soc. Am. 56, 1195–1201 (1974)

    Article  ADS  Google Scholar 

  6. Ando, Y.: Subjective preference in relation to objective parameters of music sound fields with a single echo. J. Acoust. Soc. Am. 62, 1436–1441 (1977)

    Article  ADS  Google Scholar 

  7. Ando, Y., Gottlob, D.: Effects of early multiple reflections on subjective preference judgments on music sound fields. J. Acoust. Soc. Am. 65, 524–527 (1979)

    Article  ADS  Google Scholar 

  8. Ando, Y.: Calculation of subjective preference at each seat in a concert hall. J. Acoust. Soc. Am. 74, 873–887 (1983)

    Article  ADS  Google Scholar 

  9. Ando, Y.: Architectural Acoustics, Blending Sound Sources, Sound Fields, and Listeners. AIP Press/Springer-Verlag, New York (1998)

    Google Scholar 

  10. Ando, Y.: Concert hall acoustics based on subjective preference theory. In: Rossing, T.D. (ed.) Springer Handbook of Acoustics. Springer, New York (2007)

    Google Scholar 

  11. Sabine, W.C.: Architectural Acoustics (J. Franklin Institute, January, 1915). In: Sabine, W.C. (ed.) Collected Papers on Acoustics, pp. 219–236. Dover reprint, New York (1915) (original edition Harvard, 1922)

    Google Scholar 

  12. Beranek, L.L.: Music, Acoustics and Architecture. Wiley, New York (1962)

    Google Scholar 

  13. Keet, M.V.: The influence of early lateral reflections on the spatial impression. In: Proceedings of the 6th International Congress of Acoustics, Tokyo, Paper E-2-4 (1968)

    Google Scholar 

  14. Barron, M., Marshall, A.H.: Spatial impression due to early lateral reflections in concert halls: the derivation of a physical measure. J. Sound Vib. 77(2), 211–232 (1981)

    Article  ADS  Google Scholar 

  15. Cremer, L., Müller, H.A., Schultz, T.J.: Principles and Applications of Room Acoustics, vols. 1 & 2. Applied Science Publishers, New York (1982)

    Google Scholar 

  16. Schroeder, M.: Concert halls: from magic to number theory. In: Deutsch, D. (ed.) The Psychology of Music, 2nd edn, pp. 25–46. Academic, Amsterdam (1999)

    Chapter  Google Scholar 

  17. Schroeder, M.R.: Acoustics in human communications: room acoustics, music, and speech. J. Acoust. Soc. Am. 68(1), 22–28 (1980)

    Article  ADS  Google Scholar 

  18. Kato, K., Fujii, K., Hirawa, T., Kawai, K., Yano, T., Ando, Y.: Investigation of the relation between minimum effective duration of running autocorrelation function and operatic singing with different interpretation styles. Acta Acust. United Acust. 93, 421–434 (2007)

    Google Scholar 

  19. Sabine, W.C.: Reverberation (The American Architect and the Engineering Record, 1900). In: Sabine, W.C. (ed.) Collected Papers on Acoustics, pp. 3–68. Dover reprint, New York (1900) (original edition Harvard, 1922)

    Google Scholar 

  20. Schroeder, M.R.: Models of hearing. Proc. IEEE 63, 1332–1352 (1975)

    Article  Google Scholar 

  21. Schroeder, M.R.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Freeman, New York (1991)

    MATH  Google Scholar 

  22. Ando, Y.: Concert Hall Acoustics. Springer, Heidelberg (1985)

    Book  Google Scholar 

  23. Sato, S., Otori, K., Takizawa, A., Sakai, H., Ando, Y., Kawamura, H.: Applying genetic algorithms to the optimum design of a concert hall. J. Sound Vib. 258, 517–526 (2002)

    Article  ADS  Google Scholar 

  24. Sato, S., Kitamura, T., Ando, Y.: Loudness of sharply (2068 dB/Octave) filtered noises in relation to the factors extracted from the autocorrelation function. J. Sound Vib. 250, 47–52 (2002)

    Article  ADS  Google Scholar 

  25. Singh, P.K., Ando, Y., Kurihara, Y.: Individual subjective diffuseness responses of filtered noise sound fields. Acustica 80, 471–477 (1994)

    Google Scholar 

  26. Nakayama, I.: Preferred time delay of a single reflection for performers. Acustica 54, 217–221 (1984)

    Google Scholar 

  27. Schroeder, M.R.: Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion. J. Acoust. Soc. Am. 65, 58–963 (1979)

    ADS  Google Scholar 

  28. Meyer, J.: Influence of communication on stage on musical quality. In: Proceedings of the 15th International Congress on Acoustics, Trondheim, pp. 573–576. (1995)

    Google Scholar 

  29. Soeta, Y., Nakagawa, S.: Auditory evoked magnetic fields in relation to interaural time delay and interaural crosscorrelation. Hear. Res. 220, 106–115 (2006)

    Article  Google Scholar 

  30. Palomaki, K., Tiitinen, H., Makinen, V., May, P., Alku, P.: Cortical processing of speech sounds and their analogues in a spatial auditory environment. Cogn. Brain Res. 14, 294–299 (2002)

    Article  Google Scholar 

  31. Zwicker, E., Flottorp, G., Stevens, S.S.: Critical band width in loudness summation. J. Acoust. Soc. Am. 29, 548–557 (1957)

    Article  ADS  Google Scholar 

  32. Soeta, Y., Maruo, T., Ando, Y.: Annoyance of bandpass filtered noises in relation to the factor extracted from autocorrelation function. J. Acoust. Soc. Am 116, 3275–3278 (2004)

    Article  ADS  Google Scholar 

  33. Inoue, M., Ando, Y., Taguti, T.: The frequency range applicable to pitch identification based upon the auto-correlation function model. J. Sound Vib. 241, 105–116 (2001)

    Article  ADS  Google Scholar 

  34. Cariani, P.A., Delgutte, B.: Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch. J. Neurophysiol. 76, 1698–1734 (1996)

    Google Scholar 

  35. Cariani, P.: Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plast. 6, 147–172 (1999)

    Article  Google Scholar 

  36. Sato, S., Ando, Y.: On the apparent source width (ASW) for bandpass noises related to the IACC and the width of the interaural cross-correlation function (WIACC). J. Acoust. Soc. Am. 105, 1234 (1999)

    Article  ADS  Google Scholar 

  37. Ando, Y., Kurihara, Y.: Nonlinear response in evaluating the subjective diffuseness of sound field. J. Acoust. Soc. Am. 80, 833–836 (1986)

    Article  ADS  Google Scholar 

  38. Licklider, J.C.R.: Three auditory theories. In: Koch, S. (ed.) Psychology: A Study of a Science. Study I. Conceptual and Systematic. vol. I, pp. 41–144. McGraw-Hill, New York (1959)

    Google Scholar 

  39. Cherry, C.: Two ears – but one world. In: Rosenblith, W.A. (ed.) Sensory Communication, pp. 99–117. MIT Press/John Wiley, New York (1961)

    Google Scholar 

  40. Secker-Walker, H.E., Searle, C.L.: Time domain analysis of auditory-nerve-fiber firing rates. J. Acoust. Soc. Am. 88, 1427–1436 (1990)

    Article  ADS  Google Scholar 

  41. Ando, Y., Yamamoto, K., Nagamastu, H., Kang, S.H.: Auditory brainstem response (ABR) in relation to the horizontal angle of sound incidence. Acoust. Lett. 15, 57–64 (1991)

    Google Scholar 

  42. Hecox, K., Galambos, R.: Brain stem auditory evoked responses in human infants and adults. Arch. Otolaryngol. 99, 30–33 (1974)

    Article  Google Scholar 

  43. Soeta, Y., Okamoto, Y., Nakagawa, S., Tonoike, M., Ando, Y.: Autocorrelation analyses of MEG alpha waves in relation to subjective preference of a flickering light. Neuro Rep. 13, 527–533 (2002)

    Google Scholar 

  44. Ando, Y., Kang, S.H., Morita, K.: On the relationship between auditory-evoked potential and subjective preference for sound field. J. Acoust. Soc. Jpn. (E) 8, 197–204 (1987)

    Article  Google Scholar 

  45. Ando, Y., Kang, S.H., Nagamatsu, H.: On the auditory-evoked potentials in relation to the IACC of sound field. J. Acoust. Soc. Jpn. (E) 8, 183–190 (1987)

    Article  Google Scholar 

  46. Ando, Y., Chen, C.: On the analysis of the autocorrelation function of α-waves on the left and right cerebral hemispheres in relation to the delay time of single sound reflection. J. Archit. Plan. Environ. Eng., AIJ 488, 67–73 (1996)

    Google Scholar 

  47. Chen, C., Ando, Y.: On the relationship between the autocorrelation function of the α-waves on the left and right cerebral hemispheres and subjective preference for the reverberation time of music sound field. J. Archit. Plan. Environ. Eng., AIJ 489, 73–80 (1996)

    Google Scholar 

  48. Fujii, K., Kita, S., Matsushima, T., Ando, Y.: The missing fundamental phenomenon in temporal vision. Psychol. Res. 64, 149–154 (2000)

    Article  Google Scholar 

  49. Fujii, K., Sugi, S., Ando, Y.: Textural properties corresponding to visual perception based on the correlation mechanism in the visual system. Psychol. Res. 67, 197–208 (2003)

    Article  Google Scholar 

  50. Soeta, Y., Nakagawa, S., Tonoike, M., Ando, Y.: Magnetoencephalographic responses corresponding to individual subjective preference of sound fields. J. Sound Vib. 258, 419–428 (2002)

    Article  ADS  Google Scholar 

  51. Soeta, Y., Uetani, S., Ando, Y.: Relationship between subjective preference and alpha wave activity in relation to temporal frequency and mean luminance of a flickering light. J. Opt. Soc. Am. A 19, 289–294 (2002)

    Article  ADS  Google Scholar 

  52. Soeta, Y., Uetani, S., Ando, Y.: Propagation of repetitive alpha waves over the scalp in relation to subjective preferences for a flickering light. Int. J. Psychophysiol. 46, 41–52 (2002)

    Article  Google Scholar 

  53. Sperry, R.W.: Lateral specialization in the surgically separated hemispheres. In: Schmitt, F.O., Worden, F.C. (eds.) The Neurosciences: Third Study Program. MIT Press, Cambridge (1974) (Chapter 1)

    Google Scholar 

  54. Davis, A.E., Wada, J.A.: Hemispheric asymmetry: frequency analysis of visual and auditory evoked responses to non-verbal stimuli. Electroencephalogr. Clin. Neurophysiol. 37, 1–9 (1974)

    Article  Google Scholar 

  55. Galin, D., Ellis, R.R.: Asymmetry in evoked potentials as an index of lateralized cognitive processes: relation to EEG alpha asymmetry. Neuropsychologia 13, 45–50 (1975)

    Article  Google Scholar 

  56. Levy, J., Trevarthen, C.: Metacontrol of hemispheric function in human split-brain patient. J. Exp. Psychol. Hum. Percept. Perform. 2, 299–312 (1976)

    Article  Google Scholar 

  57. Ando, Y.: Theory of temporal and spatial environmental design. In: McGraw-Hill Yearbook of Science & Technology 2009, pp. 384–389. McGraw-Hill, New York (2009)

    Google Scholar 

  58. Soeta, Y., Mizuma, K., Okamoto, Y., Ando, Y.: Effects of the degree of fluctuation on subjective preference for a 1 Hz flickering light. Perception 34, 587–593 (2005)

    Article  Google Scholar 

  59. Ando, Y., Noson, D.: Music and Concert Hall Acoustics. Academic, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cariani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ando, Y., Cariani, P. (2015). Neurally Based Acoustic and Visual Design. In: Xiang, N., Sessler, G. (eds) Acoustics, Information, and Communication. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-05660-9_8

Download citation

Publish with us

Policies and ethics