Skip to main content

Imputation of Possibilistic Data for Structural Learning of Directed Acyclic Graphs

  • Conference paper
Fuzzy Logic and Applications (WILF 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8256))

Included in the following conference series:

  • 1620 Accesses

Abstract

One recent focus of research in graphical models is how to learn them from imperfect data. Most of existing works address the case of missing data. In this paper, we are interested by a more general form of imperfection i.e. related to possibilistic datasets where some attributes are characterized by possibility distributions. We propose a structural learning method of Directed Acyclic Graphs (DAGs), which form the qualitative component of several graphical models, from possibilistic datasets. Experimental results show the efficiency of the proposed method even in the particular case of missing data regarding the state of the art Closure under tuple intersection (CUTS) method [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgelt, C., Steinbrecher, M., Kruse, R.: Graphical models: representations for learning, reasoning and data mining, vol. 704. Wiley (2009)

    Google Scholar 

  2. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann (1988)

    Google Scholar 

  3. Lauritzen, S.: The EM algorithm for graphical association models with missing data. Computational Statistics & Data Analysis 19(2), 191–201 (1995)

    Article  MATH  Google Scholar 

  4. Haouari, B., Ben Amor, N., Elouedi, Z., Mellouli, K.: Naïve possibilistic network classifiers. Fuzzy Sets and Systems 160(22), 3224–3238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bounhas, M., Mellouli, K., Prade, H., Serrurier, M.: From Bayesian classifiers to possibilistic classifiers for numerical data. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 112–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Jenhani, I., Amor, N., Elouedi, Z.: Decision trees as possibilistic classifiers. International Journal of Approximate Reasoning 48(3), 784–807 (2008)

    Article  Google Scholar 

  7. Ammar, A., Elouedi, Z., Lingras, P.: K-modes clustering using possibilistic membership. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012, Part III. CCIS, vol. 299, pp. 596–605. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Fonck, P.: Propagating uncertainty in a directed acyclic graph. In: IPMU, vol. 92, pp. 17–20 (1992)

    Google Scholar 

  9. Ayachi, R., Ben Amor, N., Benferhat, S., Haenni, R.: Compiling possibilistic networks: Alternative approaches to possibilistic inference. In: Proceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), Corvallis, Oregon, pp. 40–47. AUAI Press (2010)

    Google Scholar 

  10. Dubois, D., Prade, H., Harding, E.: Possibility theory: an approach to computerized processing of uncertainty, vol. 2. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  11. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9(4), 309–347 (1992)

    MATH  Google Scholar 

  13. Shannon, E.: A mathematical theory of evidence: Bellsyt. Techn. Journal 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  14. Chernoff, H., Lehmann, E.: The use of maximum likelihood estimates in χ 2 tests for goodness of fit. The Annals of Mathematical Statistics 25(3), 579–586 (1954)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Haddad, M., Ben Amor, N., Leray, P. (2013). Imputation of Possibilistic Data for Structural Learning of Directed Acyclic Graphs. In: Masulli, F., Pasi, G., Yager, R. (eds) Fuzzy Logic and Applications. WILF 2013. Lecture Notes in Computer Science(), vol 8256. Springer, Cham. https://doi.org/10.1007/978-3-319-03200-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03200-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03199-6

  • Online ISBN: 978-3-319-03200-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics