Skip to main content

A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy

  • Conference paper
  • 2681 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8184))

Abstract

Conformal mapping for Computed Tomography Colonography(CTC) provides a two-dimensional (2D) representations for the original three-dimensional (3D) colon wall. Based on the flattening results of the colon, efforts have been devoted toward its applications for some medical uses, such as colon registration, Taniae Coli (TC) detection and Haustral folds segmentation, and so on. Though, the previously-used conformal mapping-based flattening methods can preserve the angle or area on the wall, the 2D flattening result still limits itself to provide more accurate information contained on the original colon wall due to its’ lack of the undulating topography. In view of this limitation of the 2D flattening model, a novelty 2.5D approach was proposed in this paper. The new approach was tested for two of the many applications, i.e., the detections of Haustral folds and TCs. Experimental results revealed its validity in these applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Cancer Society: Cancer Facts & Figures 2012. American Cancer Society, Atlanta (2012)

    Google Scholar 

  2. Eddy, D.: Screening for colorectal cancer. Annals of Internal Medicine 113, 373–384 (1990)

    Article  Google Scholar 

  3. Zeng, W., Marino, J., Gu, X., Kaufman, A.: Conformal geometry based supine and prone colon registration. In: Yoshida, H., Cai, W. (eds.) Virtual Colonoscopy and Abdominal Imaging 2010. LNCS, vol. 6668, pp. 113–119. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Haker, S., Angenent, S., Kikinis, R.: Nondistorting flattening maps and the 3D visualization of colon CT images. IEEE Transactions on Medical Imaging 19, 665–670 (2000)

    Article  Google Scholar 

  5. Liang, Z., Yang, F., Wax, M., Li, J., You, J., Kaufman, A., Hong, L., Li, H., Viswambharan, A.: Inclusion of a priori information in segmentation of colon lumen for 3D virtual colonoscopy. In: Conference Record of IEEE Nuclear Science Symposium-Medical Imaging Conference, Albuquerque, NM (1997)

    Google Scholar 

  6. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge University Press (1999)

    Google Scholar 

  7. Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman, A.: Automatic centerline extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging 21, 1450–1460 (2002)

    Article  Google Scholar 

  8. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and application to virtual endoscopy. Medical Image Analysis (4), 281–299 (2001)

    Google Scholar 

  9. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proceedings of the Natural Academy of Sciences 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antiga, L.: Patient-specific modeling of geometry and blood flow in large arteries. PhD thesis, Politecnico di Milano (2003)

    Google Scholar 

  11. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, pp. 85–93 (2006)

    Google Scholar 

  12. Huang, A., Roy, D.A., Summers, R.M., Franaszek, M., Petrick, N., Choi, J.R., Pickhardt, P.J.: Teniae coli-based circumfe-rential localization system for CT colonography: Feasability study. Radiology 243(2), 551–560 (2007)

    Article  Google Scholar 

  13. Lamy, J., Summers, R.M.: Teniæ coli detection from colon surface: Extraction of anatomical markers for virtual colonoscopy. In: Bebis, G., et al. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 199–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Wei, Z., Yao, J., Wang, S., Summers, R.M.: Teniae coli extraction in human colon for computed tomographic colonography images. In: Yoshida, H., Cai, W. (eds.) Virtual Colonoscopy and Abdominal Imaging 2010. LNCS, vol. 6668, pp. 98–104. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Zhu, H., Barish, M., Pickhardt, P., Liang, Z.: Haustral fold segmentation with curvature-guided level set evolution. IEEE Trans. Biomed. Engineering 60(2), 321–331 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, H. et al. (2013). A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds) Machine Learning in Medical Imaging. MLMI 2013. Lecture Notes in Computer Science, vol 8184. Springer, Cham. https://doi.org/10.1007/978-3-319-02267-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02267-3_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02266-6

  • Online ISBN: 978-3-319-02267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics