Skip to main content

3D Neutrophil Tractions in Changing Microenvironments

  • Conference paper
  • First Online:
  • 1121 Accesses

Abstract

The mechanical properties and geometry of the surrounding microenvironment play a significant role in regulating cellular behavior including cell adhesion, migration and generation of traction forces. In many 3D tissue culture scenarios, changing the local matrix geometry, or cellular confinement simultaneously alters matrix stiffness, which makes the two physical factors coupled. In this study we design an interchangeable 2D-3D sandwich gel structure system with tunable mechanical properties capable of changing matrix stiffness and cellular confinement independently. Using a double-hydrogel system and our previously developed 3D TFM technique we investigate neutrophil migration and traction forces as a function of varying matrix stiffness and confinement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    Article  Google Scholar 

  2. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  Google Scholar 

  3. Beningo KA, Dembo M, Wang YL (2004) Responses of fibroblasts to anchorage of dorsal extracellular matrix. Proc Natl Acad Sci USA 101(52):18024–18029

    Article  Google Scholar 

  4. Lammermann T, Sixt M (2009) Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 21(5):636–644

    Article  Google Scholar 

  5. Jacobelli J et al (2010) Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat Immunol 11(10):953–961

    Article  Google Scholar 

  6. Kraning-Rush CM, Carey SP, Califano JP, Smith BN, Reinhart-King CA (2011) The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys Biol 8(1):015009

    Article  Google Scholar 

  7. Pathak A, Sanjay K (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci USA 109(26):10334–10339

    Article  Google Scholar 

  8. Tong Z et al (2012) Chemotaxis of cell populations through confined spaces at single-cell resolution. PLoS One 7(1):1–10

    Article  Google Scholar 

  9. Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Current protocols in cell biology/editorial board, Juan S. Bonifacino … [et al.] Chapter 10: Unit 10 16

    Google Scholar 

  10. Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions regulated by substrate flexbility. Proc Natl Acad Sci USA 94:13661–13665

    Article  Google Scholar 

  11. Engler AJ et al (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  Google Scholar 

  12. Maskarinec SA, Franck C, Tirrell DA, Ravichandran G (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA 106(52):22108–22113

    Article  Google Scholar 

  13. Franck C, Maskarinec SA, Tirrell DA, Ravichandran G (2011) Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 6(3):e17833

    Article  Google Scholar 

  14. Baselga J, Hernandez-Fuentes I, Pierola IF, Llorente MA (1987) Elastic properties of highly cross-linked polyacrylamide gels. Macromolecules 20:3060–3065

    Article  Google Scholar 

  15. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47:427–438

    Article  Google Scholar 

  16. Malawista SE (Chevance AB) Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. PNAS 94:11577–11582

    Google Scholar 

  17. Lammermann T et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55

    Article  Google Scholar 

  18. Smith LA, Aranda-Espinoza H, Haun JB, Dembo M, Hammer DA (2007) Neutrophil traction stresses are concentrated in the uropod during migration. Biophys J 92(7):L58–L60

    Article  Google Scholar 

  19. Oakes PW et al (2009) Neutrophil morphology and migration are affected by substrate elasticity. Blood 114(7):1387–1395

    Article  Google Scholar 

  20. Jannat RA, Dembo M, Hammer DA (2011) Traction forces of neutrophils migrating on compliant substrates. Biophys J 101(3):575–584

    Article  Google Scholar 

  21. Ting-Beall HP, Needham D, Hochmuth RM (1993) Volume and osmotic properties of human neutrophils. Blood 81:2774–2780

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennet Toyjanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Toyjanova, J., Flores-Cortez, E., Reichner, J.S., Franck, C. (2014). 3D Neutrophil Tractions in Changing Microenvironments. In: Barthelat, F., Zavattieri, P., Korach, C., Prorok, B., Grande-Allen, K. (eds) Mechanics of Biological Systems and Materials, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00777-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00777-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00776-2

  • Online ISBN: 978-3-319-00777-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics