Skip to main content

Applications of the Inverse Problem of Pollution Propagation

  • Chapter
Book cover Preventive Methods for Coastal Protection
  • 1542 Accesses

Abstract

The quantification of the potential of different offshore domains to serve as a remote source of danger to the vulnerable areas through pollution propagation is developed into a technique for the environmental management of open sea regions. The technique focuses on the identification of areas (of reduced risk) that provide the lowest level of environmental concerns for offshore activities. An approximate solution to the relevant inverse problem is constructed by means of statistical analysis of a large number of Lagrangian trajectories of pollution particles. The method contains an eddy-resolving circulation model, a scheme for the tracking of Lagrangian trajectories, a technique for the calculation of quantities characterizing the potential of different sea areas to supply adverse impacts, and routines to construct the optimum fairway. The distributions of the probability of current-driven transport of pollution to vulnerable domains and its propagation time are used for the optimization of the location of potentially dangerous activities. This technique is applied for the optimization of marine fairways to minimize the risk to high-value areas in two regions of the Baltic Sea. The environmental advantage is expressed in terms of the probability of pollution transport to the nearshore and the associated time (particle age). In the Gulf of Finland the use of the optimum fairway would decrease the probability of coastal pollution by 40 % or increase the average time it takes for the pollution to reach the coast from 5.3 to about 9 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall use the notion Baltic Proper to denote the Eastern, Northern and Western Gotland Basin (Table 2.1 in Chap. 2), Bornholm Basin and Gdańsk Bay.

References

  • Abascal AJ, Castanedo S, Medina R, Liste M (2010) Analysis of the reliability of a statistical oil spill response model. Mar Pollut Bull 60:2099–2110

    Article  Google Scholar 

  • Albretsen J, Røed LP (2010) Decadal simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models. Ocean Dyn 60:933–955

    Article  Google Scholar 

  • Alenius P, Myrberg K, Nekrasov A (1998) Physical oceanography of the Gulf of Finland: a review. Boreal Environ Res 3:97–125

    Google Scholar 

  • Alenius P, Nekrasov A, Myrberg K (2003) The baroclinic Rossby-radius in the Gulf of Finland. Cont Shelf Res 23:563–573

    Article  Google Scholar 

  • Ambjörn C (2007) Seatrack web, forecasts of oil spills, a new version. Environ Res Eng Manag 3(41):60–66

    Google Scholar 

  • Ambjörn C (2008) Seatrack web forecasts and backtracking of oil spills—an efficient tool to find illegal spills using AIS. In: IEEE/OES US/EU-Baltic international symposium, Tallinn, Estonia, May 27–29, 2008. IEEE Press, New York, pp 168–176

    Google Scholar 

  • Andrejev O, Sokolov A (1989) Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet. Meteorol Hydrol 12:75–85 (in Russian)

    Google Scholar 

  • Andrejev O, Sokolov A (1990) 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling. In: Proc 17th conf Baltic oceanographers, Norrköping, Sweden, pp 38–46

    Google Scholar 

  • Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004a) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16

    Google Scholar 

  • Andrejev O, Myrberg K, Lundberg PA (2004b) Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus A 56:548–558

    Article  Google Scholar 

  • Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Est J Eng 16:187–210

    Article  Google Scholar 

  • Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:309–334

    Article  Google Scholar 

  • ASCE Task Committee on modeling of oil spills, Water Resources Engineering Division [ASCE] (1996) State-of-the-art review of modeling transport and fate of oil spills. J Hydraul Eng 122:594–609

    Article  Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–287

    Google Scholar 

  • Blanke B, Raynard S (1997) Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagangian approach from GCM results. J Phys Oceanogr 27:1038–1053

    Article  Google Scholar 

  • Blumberg A, Mellor G (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Three-dimensional Coastal Ocean models. Coastal and estuarine science series, vol 4. American Geophysical Union, Washington, DC, pp 1–16

    Chapter  Google Scholar 

  • Bowden-Kerby A (2001) The original MPAs (Marine protected areas). MPA News 3:5–6

    Google Scholar 

  • de Vries P, Döös K (2001) Calculating Lagrangian trajectories using time-dependent velocity fields. J Atmos Ocean Technol 18:1092–1101

    Article  Google Scholar 

  • Deleersnijder E, Campin J-M, Delhez EJM (2001) The concept of age in marine modelling. I. Theory and preliminary model results. J Mar Syst 28:229–267

    Article  Google Scholar 

  • Delpeche-Ellmann NC, Soomere T (2013) Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar Pollut Bull 67:121–129

    Article  Google Scholar 

  • Dick S, Kleine E, Müller-Navarra S (2001) The operational circulation model of BSH (BSH cmod). Model description and validation. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 29/2001. Hamburg, Germany, 48 pp

    Google Scholar 

  • Döös K (1995) Inter-ocean exchange of water masses. J Geophys Res—Oceans 100:13,499–13,514

    Google Scholar 

  • Döös K, Engqvist A (2007) Assessment of water exchange between a discharge region and the open sea—a comparison of different methodological concepts. Estuar Coast Shelf Sci 74:585–597

    Article  Google Scholar 

  • Döös K, Nycander J, Coward AC (2008) Lagrangian decomposition of the Deacon Cell. J Geophys Res—Oceans 113:C07028

    Article  Google Scholar 

  • Drijfhout SS (1989) Eddy-genesis and the related heat transport: a parameter study. In: Nihoul JCJ, Jamart BM (eds) Mesoscale/synoptic coherent structures in geophysical turbulence. Elsevier oceanography series, vol 50, pp 245–263

    Chapter  Google Scholar 

  • Eide MS, Endresen Ø, Brett PE, Ervik JL, Røang K (2007) Intelligent ship traffic monitoring for oil spill prevention: risk based decision support building on AIS. Mar Pollut Bull 54:145–148

    Article  Google Scholar 

  • Elken J, Raudsepp U, Lips U (2003) On the estuarine transport reversal in deep layers of the Gulf of Finland. J Sea Res 49:267–274

    Article  Google Scholar 

  • Engqvist A, Andrejev O (2003) Water exchange of the Stockholm archipelago—a cascade framework modelling approach. J Sea Res 49:275–294

    Article  Google Scholar 

  • Engqvist A, Döös K, Andrejev O (2006) Modeling water exchange and contaminant transport through a Baltic coastal region. Ambio 35:435–447

    Article  Google Scholar 

  • Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36

    Article  Google Scholar 

  • French DP, Rines H, Masciangioli P (1997) Validation of an orimulsion spill fates model using observations from field test spill. In: Proceedings of the 20th Arctic and Marine oil spill program (AMOP) technical seminar, environment, Canada, Ottawa, Ontario, pp 933–961

    Google Scholar 

  • French-McCay DP (2004) Oil spill impact modeling: development and validation. Environ Toxicol Chem 23:2441–2456

    Article  Google Scholar 

  • Funkquist L (2001) HIROMB: an operational eddy-resolving model for the Baltic Sea. Bull Mar Inst, Gdańsk 28:7–16

    Google Scholar 

  • Gästgifvars M, Lauri H, Sarkanen A-K, Myrberg K, Andrejev O, Ambjörn C (2006) Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 70:567–576

    Article  Google Scholar 

  • Glasby GP (1997) Disposal of chemical weapons in the Baltic Sea. Sci Total Environ 208:145–147

    Article  Google Scholar 

  • Gollasch S, Leppäkoski E (2007) Risk assessment and management scenarios for ballast water mediated species introduction into the Baltic Sea. Aquat Invasions 2:313–340

    Article  Google Scholar 

  • Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175

    Article  Google Scholar 

  • Gräwe U, Wolff J-O (2010) Suspended particulate matter dynamics in a particle framework. Environ Fluid Mech 10:21–39

    Article  Google Scholar 

  • Griffa A, Piterbarg LI, Özgökmen T (2004) Predictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J Mar Res 62:1–35

    Article  Google Scholar 

  • HELCOM (2009) In: Stankiewicz M, Vlasov N (eds) Ensuring safe shipping in the Baltic. Helsinki Commission, Helsinki, 18 pp

    Google Scholar 

  • Höglund A, Meier HEM (2012) Environmentally safe areas and routes in the Baltic Proper using Eulerian tracers. Mar Pollut Bull 64:1375–1385

    Article  Google Scholar 

  • Höglund A, Meier HEM, Broman B, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 29 pp

    Google Scholar 

  • Jönsson B, Lundberg P, Döös K (2004) Baltic sub-basin turnover times examined using the Rossby Centre Ocean model. Ambio 23:257–260

    Google Scholar 

  • Kachel MJ (2008) Particularly sensitive sea areas. Hamburg studies on Maritime Affairs, vol 13. Springer, Berlin, pp 376

    Book  Google Scholar 

  • Kleine E (1994) Das operationelle Modell des BSH für Nordsee und Ostsee. Bundesamt für Seeschifffart und Hydrographie, 126 pp (in German)

    Google Scholar 

  • Kokkonen T, Ihaksi T, Jolma A, Kuikka S (2010) Dynamic mapping of nature values to support prioritization of coastal oil combating. Environ Model Softw 25:248–257

    Article  Google Scholar 

  • Kurennoy D, Parnell KE, Soomere T (2011) Fast-ferry generated waves in South-West Tallinn Bay. J Coast Res 64(Special Issue):165–169

    Google Scholar 

  • Lehmann A (1995) A three-dimensional baroclinic eddy-resolving model of the Baltic Sea. Tellus A 47:1013–1031

    Article  Google Scholar 

  • Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea—a review. J Mar Syst 74:S3–S12

    Article  Google Scholar 

  • Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54:299–316

    Article  Google Scholar 

  • Lekien F, Coulliette C, Marsden J (2003) Lagrangian structures in very high-frequency radar data and optimal pollution timing. In: Experimental chaos. AIP conference proceedings, vol 676, pp 162–168

    Chapter  Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer Praxis, Berlin, 378 pp

    Book  Google Scholar 

  • Lessin G, Ossipova V, Lips I, Raudsepp U (2009) Identification of the coastal zone of the central and eastern Gulf of Finland by numerical modeling, measurements, and remote sensing of chlorophyll a. Hydrobiologia 692:187–198

    Article  Google Scholar 

  • Lidskog R, Elander I (2012) Sweden and the Baltic Sea pipeline: between ecology and economy. Mar Policy 36:333–338

    Article  Google Scholar 

  • Lilover M-J, Pavelson J, Kõuts T (2011) Wind forced currents over the shallow Naissaar Bank in the Gulf of Finland. Boreal Environ Res 16(Suppl A):164–174

    Google Scholar 

  • Lindow H (1997) Experimentelle Simulationen windangeregter dynamischer Muster in hochauflösenden numerischen Modellen. Meereswissenschaftliche Berichte No 22, Institut für Ostseeforschung, Warnemünde (in German)

    Google Scholar 

  • Liu S-K, Leendertse J (1978) Multidimensional numerical modelling of estuaries and coastal seas. Adv Hydrosci 11:95–164

    Google Scholar 

  • Lu X, Soomere T, Stanev EV, Murawski J (2012) Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn 62:815–829

    Article  Google Scholar 

  • Matthäus W, Lass HU (1995) The recent salt inflow into the Baltic Sea. J Phys Oceanogr 25:280–286

    Article  Google Scholar 

  • Meier HEM (2001) On the parameterization of mixing in three-dimensional Baltic Sea models. J Geophys Res—Oceans 106:30,997–31,016

    Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Article  Google Scholar 

  • Meier HEM, Döscher R, Faxén T (2003) A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J Geophys Res—Oceans 108:3273

    Article  Google Scholar 

  • Mesinger F, Arakawa A (1976) Numerical methods used in atmospheric models. GARP publications series 17, vol I. WMO, Geneva, 64 pp

    Google Scholar 

  • Millero F, Kremling I (1976) The densities of the Baltic Sea deep waters. Deep-Sea Res 23:611–622

    Google Scholar 

  • Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112

    Google Scholar 

  • Myrberg K, Andrejev O, Lehmann A (2010a) Dynamic features of successive upwelling events in the Baltic Sea—a numerical case study. Oceanologia 52:77–99

    Article  Google Scholar 

  • Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010b) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15:453–479

    Google Scholar 

  • Nekrasov AV, Lebedeva IK (2002) Estimation of baroclinic Rossby radii in Luga-Koporye region. BFU Res Bull 4(5):89–93

    Google Scholar 

  • Ollitrault M, Gabillet C, Colin de Verdiere A (2005) Open ocean regimes of relative dispersion. J Fluid Mech 533:381–407

    Article  MATH  Google Scholar 

  • Osiński R, Piechura J (2009) Latest findings about circulation of upper layer in the Baltic Proper. In: BSSC 2009 abstract book, Tallinn, August 17–21, 2009, p 103

    Google Scholar 

  • Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52:417–429

    Article  Google Scholar 

  • Parnell KE, Delpeche N, Didenkulova I, Dolphin T, Erm A, Kask A, Kelpšaitė L, Kurennoy D, Quak E, Räämet A, Soomere T, Terentjeva A, Torsvik T, Zaitseva-Pärnaste I (2008) Far-field vessel wakes in Tallinn Bay. Est J Eng 14:273–302

    Article  Google Scholar 

  • Reed M, Johansen O, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5:3–16

    Article  Google Scholar 

  • Rice J (2003) Environmental health indicators. Ocean Coast Manag 46:235–259

    Article  Google Scholar 

  • Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc A 110:709–737

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea, 2nd edition. In: Baltic Sea Science Congress, Stockholm, 25–29 November 2001. Poster #147. www.io-warnemuende.de/iowtopo

    Google Scholar 

  • Sokolov A, Andrejev O, Wulff F, Rodriguez Medina M (1997) The data asssimilation system for data analysis in the Baltic Sea. System Ecology Contributions No 3. Stockholm University, Sweden, 66 pp

    Google Scholar 

  • Soomere T, Keevallik S (2003) Directional and extreme wind properties in the Gulf of Finland. Proc Est Acad Sci, Eng 9:73–90

    Google Scholar 

  • Soomere T, Quak E (2007) On the potential of reducing coastal pollution by a proper choice of the fairway. J Coast Res 50(Special Issue):678–682

    Google Scholar 

  • Soomere T, Viikmäe B, Delpeche N, Myrberg K (2010) Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc Est Acad Sci 59:156–165

    Article  Google Scholar 

  • Soomere T, Andrejev O, Sokolov A, Myrberg K (2011a) The use of Lagrangian trajectories for identification the environmentally safe fairway. Mar Pollut Bull 62:1410–1420

    Article  Google Scholar 

  • Soomere T, Andrejev O, Sokolov A, Quak E (2011b) Management of coastal pollution by means of smart placement of human activities. J Coast Res 64(Special Issue):951–955

    Google Scholar 

  • Soomere T, Berezovski M, Quak E, Viikmäe B (2011c) Modeling environmentally friendly fairways in elongated basins using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea. Ocean Dyn 61:1669–1680

    Article  Google Scholar 

  • Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011d) Patterns of current-induced transport in the surface layer of the gulf of Finland. Boreal Environ Res 16(Suppl A):49–63

    Google Scholar 

  • Soomere T, Viidebaum M, Kalda J (2011e) On dispersion properties of surface motions in the Gulf of Finland. Proc Est Acad Sci 60:269–279

    Article  Google Scholar 

  • Stokstad E (2009) US poised to adopt national ocean policy. Science 326:1618

    Article  Google Scholar 

  • Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Prog Oceanogr 82:149–167

    Article  Google Scholar 

  • Viikmäe B, Soomere T (2013) Spatial pattern of hits to the nearshore from a major marine highway in the Gulf of Finland. J Mar Syst

    Google Scholar 

  • Viikmäe B, Soomere T, Viidebaum M, Berezovski A (2010) Temporal scales for transport patterns in the Gulf of Finland. Est J Eng 16:211–227

    Article  Google Scholar 

  • Viikmäe B, Soomere T, Parnell KE, Delpeche N (2011) Spatial planning of shipping and offshore activities in the Baltic Sea using Lagrangian trajectories. J Coast Res 64(Special Issue):956–960

    Google Scholar 

  • Webb DJ, Coward AC, de Cuevas BA, Gwilliam CS (1997) A multiprocessor ocean circulation model using message passing. J Atmos Ocean Technol 14:175–183

    Article  Google Scholar 

  • WWF (2010) Future trends in the Baltic Sea. WWF Baltic Ecoregion Programme. Solna, Sweden, 40 pp

    Google Scholar 

  • Zhurbas V, Laanemets J, Vahtera E (2008) Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J Geophys Res—Oceans 113:C05004

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the funding from the Estonian Science Foundation and the European Community’s Seventh Framework Programme (2007–2013) under grant agreement No. 217246 made with the joint Baltic Sea research and development programme BONUS. The BalticWay project attempted to identify the regions in the Baltic Sea that are associated with increased risk compared to other sea areas and to propose ways to reduce the risk of them being polluted by placing activities in other areas that may provide less risk. The research was also partially supported by the Marie Curie RTN SEAMOCS (MRTN-CT-2005-019374), the Marie Curie Transfer of Knowledge project CENS-CMA (MC-TK-013909), Marie Curie Reintegration Grant ESTSpline (PERG02-GA-2007-224819), the targeted financing by the Estonian Ministry of Education and Science (grants SF0140077s08 and SF0140007s14) and the Estonian Science Foundation (grant No. 7413). The contribution of Anders Anbo towards the application of the TRACMASS model in the Institute of Cybernetics and the help from Kristofer Döös during its use are gratefully acknowledged. The Wave Engineering Laboratory team is deeply grateful to Markus Meier and Anders Höglund (SMHI) who provided the RCO model data and meteorological forcing in the framework of the BONUS cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarmo Soomere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soomere, T. (2013). Applications of the Inverse Problem of Pollution Propagation. In: Soomere, T., Quak, E. (eds) Preventive Methods for Coastal Protection. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00440-2_10

Download citation

Publish with us

Policies and ethics