Skip to main content

Luminal lectins

  • Chapter
Book cover The Golgi Apparatus
  • 1392 Accesses

Abstract

Asparagine-linked glycosylation (N-glycosylation) isa major post-translation- al modification of secretory and membrane proteins and influences important physical protein properties such as conformation, stability and solubility (Helenius and Aebi 2001). The majority of proteins that enter the secretory pathway receives multiple N-linked glycans. N-glycosylation is initiated cotranslationally in the lumen of the endoplasmic reticulum (ER) by oligosacchary ltransferase. This multisubunit protein complex scans nascent proteins for N-glycosylation consensus sequences (Asn-X-Ser/Thr) and catalyzes the transfer of a 14-saccharide core glycan to the asparagine residue (Fig. 1). About two-thirds of all consensus sites are glycosylated. After conjugation to the protein, the 14-saccharide core is trimmed in ERand Golgi by glycosidases and extended in the Golgi by glycosyltransferases (Kornfeld and Kornfeld 1985). ER glucosidases I and II remove the three glucose (Glc) residues, whereas ER a1,2 mannosidase I and Golgi α1,2 mannosidases 1A, 1B and 1C trim the α1,2-linked mannoses (Man). In the Golgi, two additional Man residues are cleaved and the N-glycans undergo complex glycosylation by the addition of N-acetylglucosamine (GlcNAc), fucose, galactose and sialic acid residues. After traversing the Golgi, glycoproteins carry various N-linked glycans differing in composition and structure. This heterogeneity allows mature glycoproteins to fulfill a plethora of functions including the presentation of interaction sites for other molecules (Varki 1993). In contrast, nascent glycoproteins in the early secretory pathway, termed high-mannose glycoproteins, display only few but distinct oligosaccharide structures which function as recognition tags for different sugar-binding proteins (lectins). With their carbohydrate recognition domain (CRD), the lectins bind newly synthesized glycoproteins and control their folding, degradation, transport and sorting. Here, we provide an overview of the different animal lectins localized to the lumen of the secretory pathway (Table 1) and describe them grouped according to their proposed function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Appenzeller-Herzog C, Hauri HP (2006) The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119: 2173–2183

    Article  PubMed  CAS  Google Scholar 

  • Appenzeller-Herzog C, Nyfeler B, Burkhard P, Santamaria I, Lopez-Otin C, Hauri HP (2005) Carbohydrate-and conformation-dependent cargo capture for ER-exit. Mol Biol Cell 16: 1258–1267

    Article  PubMed  CAS  Google Scholar 

  • Avezov E, Frenkel Z, Ehrlich M, Herscovics A, Lederkremer GZ (2008) ER Mannosidase I Is compartmentalized and required for N-glycan trimming to Man5 6GlcNAc2 in glycoprotein ER-associated degradation. Mol Biol Cell 19: 216–225

    Article  PubMed  CAS  Google Scholar 

  • Baines AC, Zhang B (2007) Receptor-mediated protein transport in the early secretory pathway. Trends Biochem Sci 32, 381–388

    Article  PubMed  CAS  Google Scholar 

  • Distler JJ, Guo JF, Jourdian GW, Srivastava OP, Hindsgaul O (1991)The binding specificity of high and low molecular weight phosphomannosyl receptors from bovine testes. Inhibition studies with chemically synthesized 6-O-phosphorylated oligomanno-sides. J Biol Chem 266: 21687–21692

    PubMed  CAS  Google Scholar 

  • Ermonval M, Kitzmuller C, Mir AM, Cacan R, Ivessa NE (2001) N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation. Glycobiology 11: 565–576

    Article  PubMed  CAS  Google Scholar 

  • Fiedler K, Parton RG, Kellner R, Etzold T, Simons K (1994) VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J13:1729–1740

    PubMed  CAS  Google Scholar 

  • Fliegel L, Burns K, MacLennan DH, Reithmeier RA, Michalak M (1989) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264: 21522–21528

    PubMed  CAS  Google Scholar 

  • Fullekrug J, Scheiffele P, Simons K (1999) VIP36 localisation to the early secretory pathway. J Cell Sci 112(Pt 17): 2813–2821

    PubMed  CAS  Google Scholar 

  • Hauri H, Appenzeller C, Kuhn F, Nufer O (2000a) Lectins and traffic in the secretory pathway. FEBS Lett 476: 32–37

    Article  PubMed  CAS  Google Scholar 

  • Hauri HP, Kappeler F, Andersson H, Appenzeller C (2000b) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113(Pt 4): 587–596

    PubMed  CAS  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291: 2364–2369

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Trombetta ES, Hebert DN, Simons JF (1997) Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol 7: 193–200

    Article  CAS  Google Scholar 

  • Hosokawa N, Wada I, Natsuka Y, Nagata K (2006) EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cells 11:465–476

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, Kamiya D, Yamamoto K, Nyfeler B, Hauri HP, Kato K (2008) Molecular basis of sugar recognition by the human L-type lectins ERG IC-53, VIPL and VIP36. J Biol Chem 283:1857–1861

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, Yamaguchi Y, Takahashi N, Arata Y, Kasai K, Ihara Y, Matsuo I, Ito Y, Yamamoto K, Kato K (2005) Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. J Biol Chem 280: 37178–37182

    Article  PubMed  CAS  Google Scholar 

  • Kanehara K, Kawaguchi S, Ng DT (2007) The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev Biol 18: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1: 462–468

    PubMed  CAS  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525

    Article  PubMed  CAS  Google Scholar 

  • Molinari M (2007) N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol 3: 313–320

    Article  PubMed  CAS  Google Scholar 

  • Neve EP, Svensson K, Fuxe J, Pettersson RF (2003) VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Exp Cell Res 288: 70–83

    Article  PubMed  CAS  Google Scholar 

  • Nufer O, Mitrovic S, Hauri HP (2003) Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. J Biol Chem 278: 15886–15896

    Article  PubMed  CAS  Google Scholar 

  • Olivari S, Cali T, Salo KE, Paganetti P, Ruddock LW, Molinari M (2006) EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem Biophys Res Commun 349: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Olivari S, Molinari M (2007) Glycoprotein folding and the role of EDEM1, EDEM2 and EDEM3 in degradation offolding defective glycoproteins. FEBS Lett 581:3658–3664

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Zhang J, Dahms NM, Kim JJ (2002) Twists and turns of the cation-dependent mannose 6-phosphate receptor. Ligand bound versus ligand-free receptor. J Biol Chem 277: 10156–10161

    Article  PubMed  CAS  Google Scholar 

  • Ou WJ, Cameron PH, Thomas DY, Bergeron JJ (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364:771–776

    Article  PubMed  CAS  Google Scholar 

  • Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69: 69–93

    Article  PubMed  CAS  Google Scholar 

  • Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS (2001) Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292: 1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Sakulsak N, Wakayama T, Hipkaeo W, Yamamoto M, Iseki S (2005) Cloning and characterization of a novel animal lectin expressed in the rat sublingual gland. J Histochem Cytochem 53: 1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Cowieson NP, Hakamata W, Ideo H, Fukushima K, Kurihara M, Kato R, Yamashita K, Wakatsuki S (2007) Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. J Biol Chem 282: 28246–28255

    Article  PubMed  CAS  Google Scholar 

  • Schweizer A, Fransen JA, Bachi T, Ginsel L, Hauri HP (1988) Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 107: 1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130

    Article  PubMed  CAS  Google Scholar 

  • Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ II, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266: 19599–19610

    PubMed  CAS  Google Scholar 

  • Whyte JR, Munro S (2001) A yeast homolog of the mammalian mannose 6-phosphate receptors contributes to the sorting of vacuolar hydrolases. Curr Biol 11,1074–1078

    Article  PubMed  CAS  Google Scholar 

  • Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119: 615–623

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi N, Keppler-Hafkemeyer A, Vasmatzis G, Liu XF, Olsson P, Bera TK, Duray P, Lee B, Pastan I (2001) ERGL, a novel gene related to ERGIC-53 that is highly expressed in normal and neoplastic prostate and several other tissues. Gene 265: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, McVey JH, Schulte-Overberg U, De Bosch NB, Ruiz-Saez A, White GC, Tuddenham EG, Kaufman RJ, Ginsburg D (2003) Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 34: 220–225

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S (2001) Binding of GGA2tothe lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292: 1716–1718

    Article  PubMed  CAS  Google Scholar 

  • Zuber C, Cormier JH, Guhl B, Santimaria R, Hebert DN, Roth J (2007) EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proc Natl Acad Sci USA 104: 4407–4412

    Article  PubMed  CAS  Google Scholar 

Supplementary references Protein folding and quality control in the ER

  • Denzel A, Molinari M, Trigueros C, Martin JE, Velmurgan S, Brown S, Stamp G, Owen MJ (2002) Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol Cell Biol 22: 7398–7404

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Riek R, Herrmann T, Guntert P, Braun D, Helenius A, Wuthrich K (2001) NMR structure of the calreticulin P-domain. Proc Natl Acad Sci USA 98: 3133–3138

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA) 91: 913–9

    Article  PubMed  CAS  Google Scholar 

  • Jackson MR, Cohen-Doyle MF, Peterson PA, Williams DB (1994) Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263: 384–387

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Lynch J, Groenendyk J, Guo L, Robert Parker JM, Opas M (2002) Calreticulin in cardiac development and pathology. Biochim Biophys Acta 1600: 32–37 220

    PubMed  CAS  Google Scholar 

  • Moore SE, Spiro RG (1993) Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. J Biol Chem 268: 3809–3812

    PubMed  CAS  Google Scholar 

  • Schrag JD, Bergeron JJ, Li Y, Borisova S, Hahn M, Thomas DY, Cygler M (2001) The Structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8: 633–644

    Article  PubMed  CAS  Google Scholar 

  • Solda T, Galli C, Kaufman RJ, Molinari M (2007) Substrate-specific requirements for UGT1-dependent release from calnexin. Mol Cell 27: 238–249

    Article  PubMed  CAS  Google Scholar 

  • Vassilakos A, Michalak M, Lehrman MA, Williams DB (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–3490

    Article  PubMed  CAS  Google Scholar 

ER-associated protein degradation

  • Buschhorn BA, Kostova Z, Medicherla B, Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Eriksson KK, Vago R, Calanca V, Galli C, Paganetti P, Molinari M (2004) EDEM contributes to maintenance of protein folding efficiency and secretory capacity. J Biol Chem 279: 44600–44605

    Article  PubMed  CAS  Google Scholar 

  • Hirao K, Natsuka Y, Tamura T, Wada I, Morito D, Natsuka S, Romero P, Sleno B, Tremblay LO, Herscovics A, Nagata K, Hosokawa N (2006) EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and man-nose trimming. J Biol Chem 281: 9650–9658

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278: 26287–26294

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated deg-radation. EMBO Rep 2: 415–422

    PubMed  CAS  Google Scholar 

  • Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15: 421–436

    Article  PubMed  CAS  Google Scholar 

  • Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299: 1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299: 1394–1397

    Article  PubMed  CAS  Google Scholar 

  • Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280: 2424–2428

    Article  PubMed  CAS  Google Scholar 

  • Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19: 765–775

    Article  PubMed  CAS  Google Scholar 

Protein transport

  • Anelli T, Ceppi S, Bergamelli L, Cortini M, Masciarelli S, Valetti C, Sitia R (2007) Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis. EMBO J 26: 4177–4188

    Article  PubMed  CAS  Google Scholar 

  • Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP (2004) pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 279: 12943–12950 221

    Article  PubMed  CAS  Google Scholar 

  • Dahm T, White J, Grill S, Fullekrug J, Stelzer EH (2001) Quantitative ER-Golgi transport kinetics and protein separation upon Golgi exit revealed by vesicular integral membrane protein 36 dynamics in live cells. Mol Biol Cell 12: 1481–1498

    PubMed  CAS  Google Scholar 

  • Hara-Kuge S, Ohkura T, Ideo H, Shimada O, Atsumi S, Yamashita K (2002) Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin Darby canine kidney (MDCK) cells. J Biol Chem 277: 16332–16339

    Article  PubMed  CAS  Google Scholar 

  • Itin C, Roche AC, Monsigny M, Hauri HP (1996) ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol Biol Cell 7:483–493

    PubMed  CAS  Google Scholar 

  • Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP (1997) The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endo-plasmic reticulum-exit determinant interacting with COPII. J Biol Chem 272: 31801–31808

    Article  PubMed  CAS  Google Scholar 

  • Klumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP (1998) The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 111 (Pt 22): 3411–3425

    PubMed  CAS  Google Scholar 

  • Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, Moussalli MJ, Hauri HP, Ciavarella N, Kaufman RJ, Ginsburg D (1998) Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Nufer O, Kappeler F, Guldbrandsen S, Hauri HP (2003) ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J Cell Sci 116:4429–4440

    Article  PubMed  CAS  Google Scholar 

  • Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA 102: 6350–6355

    Article  PubMed  CAS  Google Scholar 

  • Nyfeler B, Zhang B, Ginsburg D, Kaufman RJ, Hauri HP (2006) Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex. Traffic 7: 1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu Rev Cell Dev Biol 12:27–54

    Article  PubMed  CAS  Google Scholar 

  • Velloso LM, Svensson K, Pettersson RF, Lindqvist Y (2003) The crystal structure of the carbohydrate-recognition domain of the glycoprotein sorting receptor p58/ERGIC-53 reveals an unpredicted metal-binding site and conformational changes associated with calcium ion binding. J Mol Biol 334: 845–851

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider F, Kappeler F, Itin C, Hauri HP (1998) Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J Cell Biol 142: 377–389

    Article  PubMed  CAS  Google Scholar 

  • Wendeler MW, Paccaud JP, Hauri HP (2007) Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep 8: 258–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi D, Kawasaki N, Matsuo I, Totani K, Tozawa H, Matsumoto N, Ito Y, Yamamoto K (2007) VIPL has sugar-binding activity specific for high-mannose-type N-glycans, and glucosylation of the alpha-1,2 mannotriosyl branch blocks its binding. Glycobiology 17: 1061–1069

    Article  PubMed  CAS  Google Scholar 

Lysosomal protein sorting in the Golgi

  • Breuer P, Korner C, Boker C, Herzog A, Pohlmann R, Braulke T (1997) Serine phosphorylation site of the 46-kDa mannose 6-phosphate receptor is required for transport to the plasma membrane in Madin-Darby canine kidney and mouse fibroblast cells. Mol Biol Cell 8: 567–576

    PubMed  CAS  Google Scholar 

  • Chao HH, Waheed A, Pohlmann R, Hille A, Von Figura K (1990) Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J 9: 3507–3513

    PubMed  CAS  Google Scholar 

  • Dahms NM, Hancock MK (2002) P-type lectins. Biochim Biophys Acta 1572: 317–340

    PubMed  CAS  Google Scholar 

  • Dahms NM, Rose PA Molkentin JD, Zhang Y, Brzycki MA (1993) The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding. J Biol Chem 268: 5457–5463

    PubMed  CAS  Google Scholar 

  • Diaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93: 433–443

    Article  PubMed  CAS  Google Scholar 

  • Duncan JR, Kornfeld S (1988) Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J Cell Biol 106: 617–628

    Article  PubMed  CAS  Google Scholar 

  • Koster A, Von Figura K, Pohlmann R (1994) Mistargeting of lysosomal enzymes in M(r) 46,000 mannose 6-phosphate receptor-deficient mice is compensated by carbohydrate-specific endocytotic receptors. Eur J Biochem 224: 685–689

    Article  PubMed  CAS  Google Scholar 

  • Meresse S, Hoflack B (1993) Phosphorylation of the cation-independent mannose 6-phosphate receptor is closely associated with its exit from the trans-Golgi network. J Cell Biol 120: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329:301–307

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Zhang J, Lee YC, Dahms NM, Kim JJ (1999) Structural basis for recognition of phosphorylated high mannose oligosaccharides by the cation-dependent mannose 6-phosphate receptor. J Biol Chem 274: 29889–29896

    Article  PubMed  CAS  Google Scholar 

  • Reczek D, Schwake M, Schroder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P (2007) LIMP-2 is a receptor for lysosomal mannose-6-phos-phate-independent targeting of beta-glucocerebrosidase. Cell 131: 770–783

    Article  PubMed  CAS  Google Scholar 

  • Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR (1994) Lysosome biogenesis requires Rab9 function and receptor recycling from endosomestothe trans-Golgi network. J Cell Biol 125: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Roberts DL, Weix DJ, Dahms NM, Kim JJ (1998) Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93: 639–648

    Article  PubMed  CAS  Google Scholar 

  • Rohrer J, Kornfeld R (2001) Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network. Mol Biol Cell 12: 1623–1631

    PubMed  CAS  Google Scholar 

  • Sahagian GG, Distler J, Jourdian GW (1981) Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicu-lar beta-galactosidase. Proc Natl Acad Sci USA 78: 4289–4293

    Article  PubMed  CAS  Google Scholar 

  • Schweizer A, Kornfeld S, Rohrer J (1996) Cysteine 34 of the cytoplasmic tail of the cationdependent mannose 6-phosphate receptor is reversiblypalmitoylated and required for normal trafficking and lysosomal enzyme sorting. J Cell Biol 132: 577–584

    Article  PubMed  CAS  Google Scholar 

  • Schweizer A, Kornfeld S, Rohrer J (1997) Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc Natl Acad Sci USA 94: 14471–14476

    Article  PubMed  CAS  Google Scholar 

  • Steet R, Lee WS, Kornfeld S (2005) Identification of the minimal lysosomal enzyme recognition domain in cathepsin D. J Biol Chem 280: 33318–33323

    Article  PubMed  CAS  Google Scholar 

  • Tong PY, Tollefsen SE, Kornfeld S (1988) The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem 263: 2585–2588

    PubMed  CAS  Google Scholar 

  • Wan L, Molloy SS, Thomas L, Liu G, Xiang Y, Rybak SL, Thomas G (1998) PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization. Cell 94: 205–216

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nyfeler, B., Koegler, E., Reiterer, V., Hauri, HP. (2008). Luminal lectins. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_14

Download citation

Publish with us

Policies and ethics