Skip to main content

Semiconductor nanocrystal-polymer composites: using polymers for nanocrystal processing

  • Chapter
Book cover Semiconductor Nanocrystal Quantum Dots
  • 4856 Accesses

Abstract

Semiconductor nanocrystals (NCs) in the size range of 1–10 nm exhibit unique size-dependent photoluminescence properties, distinct from either the corresponding molecules or bulk materials, which are a result of quantum confinement effect and enormously high specific surface area [1]–[5]. Accordingly, there is much speculation about the potential use of semiconductor NCs in a vast spectrum of high-technology fields such as optics, electronics, and biomedicine. In this context, the past decade has seen a great progress in tailoring a diversity of semiconductors into nanometer-sized particles with defined but varied size, shape, and surface chemistry [6]–[9]. Once prepared, however, NCs in general have a strong tendency to agglomerate owing to the presence of a great deal of highly active surface atoms, which dramatically deteriorates their physicochemical properties. Stabilization of NCs is necessitated for both exploring their intrinsic size-related properties and exploiting their technical applicability. Up to now numerous approaches have been developed to stabilize semiconductor NCs by surface charges [6], functionalized alkanes [6]–[9], silica [10]–[13], and polymers [14]. The stability of a NC is determined by the thermodynamic balance between repulsive interactions — mainly electrostatic repulsion and steric repulsion — and attractive interactions — mainly van der Waals and hydrophobic interaction; the NC is stable when the repulsive interactions are dominant. Since the electrostatic repulsion is rather sensitive to the size of NCs and the variation of the surrounding media, steric repulsion is envisioned ideal for stabilization of NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weller H (1993) Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew Chem Int Ed 32: 41–53

    Article  Google Scholar 

  2. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271: 933–937

    Article  CAS  Google Scholar 

  3. Kagan CR, Murray CB, Bawendi MG (1996) Lang-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54: 8633–8643

    Article  CAS  Google Scholar 

  4. Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32: 407–414

    Article  CAS  Google Scholar 

  5. Medintz I, Uyeda T, Goldman E et al (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4: 435–446

    Article  CAS  Google Scholar 

  6. Rogach A, Franzl T, Klar T et al (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state of the art. J Phys Chem C 111: 14628–14637

    Article  CAS  Google Scholar 

  7. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Ann Rev Mater Res 34: 41–81

    Article  CAS  Google Scholar 

  8. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107: 2228–2269

    Article  CAS  Google Scholar 

  9. Kumar S, Nann T (2006) Shape-control of II–VI semiconductor nanomaterils. Small 2: 316–329

    Article  CAS  Google Scholar 

  10. Gerion D, Pinaud F, Williams S et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105: 8861–8871

    Article  CAS  Google Scholar 

  11. Rogach A, Negesha D, Ostrander J et al (2000) “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem Mater 12: 2676–2685

    Article  CAS  Google Scholar 

  12. Nann T, Mulvaney P (2004) Single quantum dots in spherical silica particles. AngewChem Int Ed 43: 5393–5396

    Article  CAS  Google Scholar 

  13. Yang Y, Gao M (2005) Preparation of fluorescent SiO2 particle with single CdTe nanocrystal core by the reverse microemulsion method. Adv Mater 17: 2354–2357

    Article  CAS  Google Scholar 

  14. Godovsky D (2000) Device application of polymer-nanocomposites. Adv Polym Sci 153: 163–205

    Article  CAS  Google Scholar 

  15. Abouraddy AF, Bayindir M, Benoit G et al (2007) Towards multimaterials multifunctional fibres that see, hear, sense and communicate. Nat Mater 6: 336–347

    Article  CAS  Google Scholar 

  16. Dubertret BD, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298: 1759–1762

    Article  CAS  Google Scholar 

  17. Wu X, Liu H, Liu J et al (2003) Immunoflurescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21: 41–46

    Article  CAS  Google Scholar 

  18. Nayak S, Lyon A (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44: 7686–7708

    Article  CAS  Google Scholar 

  19. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42: 1692–1712

    Article  CAS  Google Scholar 

  20. Lin Y, Boeker A, He H et al (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434: 55–59

    Article  CAS  Google Scholar 

  21. Kuang M, Wang D, Möhwald H (2005) Fabrication of thermoresponsive plasmonic microspheres with long-term stability from hydrogen spheres. Adv Funct Mater 15: 1611–1616

    Article  CAS  Google Scholar 

  22. Hofman-Caris CHM (1994) Polymers at the surface of oxide nanoparticles. New J Chem 18: 1087–1096

    CAS  Google Scholar 

  23. Wang J, Chen W, Liu A et al (2002) Controlled fabrication of cross-linked nanoparticles/polymer composite thin films through the combined use of surface-initiated atom transfer radical polymerization and gas/solid reaction. J Am Chem Soc 124: 13358–13359

    Article  CAS  Google Scholar 

  24. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126: 7908–7914

    Article  CAS  Google Scholar 

  25. Peng X, Manna L, Yang W et al (2000) Shape control of CdSe nanocrystals. Nature 404: 59–61

    Article  CAS  Google Scholar 

  26. Puntes V, Krishnan K, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291: 2115–2117

    Article  CAS  Google Scholar 

  27. Qu L, Peng Z, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1: 333–337

    Article  CAS  Google Scholar 

  28. CaoY, Banin U (2000) Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc 122: 9692–9702

    Article  CAS  Google Scholar 

  29. Gaponik N, Talapin D, Rogach A et al (2002) Thiol-capping CdTe nanocrystals: an alternative to organometallic synthesis routes. J Phys Chem B 106: 7177–7185

    Article  CAS  Google Scholar 

  30. Zhang H, Wang D, Yang B et al (2006) Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures. JAm Chem Soc 128: 10171–10180

    Article  CAS  Google Scholar 

  31. Zhang H, Wang D, Möhwald H (2006) Ligand-selective aqueous synthesis of one-dimensional CdTe nanostructures. Angew Chem Int Ed 45: 748–751

    Article  CAS  Google Scholar 

  32. Bao H, Gong Y, Li Z et al (2004) Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: towards highly fluorescent CdTe/CdS core-shell structure. Chem Mater 16: 3853–3859

    Article  CAS  Google Scholar 

  33. Sastry M (2003) Phase transfer protocols in nanoparticle synthesis. Curr Sci 85: 1735–1745

    CAS  Google Scholar 

  34. Fogg D, Radzilowski L, Dabbousi B et al (1997) Fabrication of quantum dot-polymer composites: semiconductor nanoclusters in dual-function polymer matrices with electron-transporting and cluster-passivating properties. Macromolecules 26: 8433–8439

    Article  Google Scholar 

  35. Fogg D, Radzilowski L, Blanski R et al (1997) Fabrication of quantum dot/polymer composites: phosphine-functionalized block copolymers as passivating hosts for cadmium selenide nanoclusters. Macromolecules 30: 417–426

    Article  CAS  Google Scholar 

  36. Lee J, Sundar V, Heine J et al (2000) Full color emission from II–VI semiconductor quantum dot-polymer composite. Adv Mater 12: 1102–1105

    Article  CAS  Google Scholar 

  37. Zhang H, Cui Z, Wang Y et al (2003) From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv Mater 15: 777–780

    Article  CAS  Google Scholar 

  38. Sudeep P, Emrick T (2007) Polymer-nanoparticle composites: preparative methods and electronically active materials. Polym Rev 47: 155–163

    Article  CAS  Google Scholar 

  39. Shallcross C, D’Ambruoso G, Korth B et al (2007) Poly(3,4-ethylene dioxythiophene)-semiconductor nanoparticle composite thin films tethered to indium tin oxide substrates via electropolymerization. J Am Chem Soc 129: 11310–11311

    Article  CAS  Google Scholar 

  40. Yang Y, Wen Z, Dong Y et al (2006) Incorporating CdTe nanocrystals into polystyrene microspheres: towards robust fluorescent beads. Small 2: 898–901

    Article  CAS  Google Scholar 

  41. Kim B, Taton A (2007) Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants. Langmuir 23: 2198–2202

    Article  CAS  Google Scholar 

  42. Duxin N, Liu F, Vali H et al (2005) Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates. J Am Chem Soc 127: 10063–10069

    Article  CAS  Google Scholar 

  43. YuW, Chang E, Falkner J et al (2007) Forming biocompatible and noaggregated nanocrystals in water using amphiphlic polymers. J Am Chem Soc 129: 2871–2879

    Article  CAS  Google Scholar 

  44. Pellegrino T, Manna L, Kudera S et al (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4: 703–707

    Article  CAS  Google Scholar 

  45. Zhang H, Wang C, Li M et al (2005) Fluorescent nanocrystal-polymer composites from aqueous nanocrystals: methods without ligand exchange. Chem Mater 17: 4783–4788

    Article  CAS  Google Scholar 

  46. Zhang H, Wang C, Li M et al (2005) Fluorescent nanocrystal-polymer complexes with flexible processability. Adv Mater 17: 853–857

    Article  CAS  Google Scholar 

  47. Sun H, Zhang J, Zhang H et al (2006) Preparation of carbozole-containing amphiphilic copolymers: an efficient method for the incorporation of functional nanocrystals. Macromol Mater Eng 291: 929–936

    Article  CAS  Google Scholar 

  48. Sun H, Zhang J, Zhang H et al (2006) Pure white-light emission of nanocrystal-polymer composites. ChemPhysChem 7: 2492–2496

    Article  CAS  Google Scholar 

  49. Qi X, Pu K, Fang C et al (2007) Semiconductor nanocomposites of emissive flexible random copolymers and CdTe nanocrystals: preparation, characterization, and optoelectronic properties. Macromol Chem Phys 208: 2007–2017

    Article  CAS  Google Scholar 

  50. Haryono A, Binder W (2006) Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2: 600–611

    Article  CAS  Google Scholar 

  51. Wang X, Dykstra T, Salvador M et al (2004) Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. JAmChem Soc 126: 7784–8785

    Article  CAS  Google Scholar 

  52. Wang X, Oh J, Dykstra T et al (2006) Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(N-dimethylaminoethyl methacrylate). Macromolecules 39: 3664–3672

    Article  CAS  Google Scholar 

  53. Wang M, Felorzabihi N, Guerin G et al (2007) Water-soluble CdSe quantum dots passivated by a multidentate diblock copolymer. Macromolecules 40: 6377–6384

    Article  CAS  Google Scholar 

  54. Nikolic M, Krack M, Aleksandrovic V et al (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem Int Ed 45: 6577–6580

    Article  CAS  Google Scholar 

  55. Kim S, Bawendi MG (2003) Oligometric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125: 14652–14653

    Article  CAS  Google Scholar 

  56. Guo W, Li J, Wang Y et al (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. JAm Chem Soc 125: 3901–3909

    Article  CAS  Google Scholar 

  57. Lin Y, Skaff H, Böker A et al (2003) Ultrathin cross-linked nanoparticle membranes. JAm Chem Soc 125: 12690–12691

    Article  CAS  Google Scholar 

  58. Skaff H, Lin Y, Rangirala R et al (2005) Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking. Adv Mater 17: 2082–2086

    Article  CAS  Google Scholar 

  59. Franzel U, Nuyken O (2002) Rutenium-based metathesis initiators: development and use in ringopening metathesis polymerization. J Polym Sci A: Polym Chem 40: 2895–2916

    Article  CAS  Google Scholar 

  60. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101: 2921–2990

    Article  CAS  Google Scholar 

  61. Hawker C, Bosman A, Harth E (2001) Newpolymer synthesis by nitroxide mediated living radical polymerization. Chem Rev 101: 3661–3668

    Article  CAS  Google Scholar 

  62. Moad G, Rizzardo E, Thang S (2005) Living radical polymerization by the RAFT process. Aust J Chem 58: 379–410

    Article  CAS  Google Scholar 

  63. Braunecker W, Matyjaszewski K (2007) Controlled/living radical polymerization: feature, developments, and perspectives. Prog Polym Sci 32: 93–146

    Article  CAS  Google Scholar 

  64. Lu C, Cheng Y, Liu Y et al (2006) A facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via g-ray irradiation initiated bulk polymerization. Adv Mater 18: 1188–1192

    Article  CAS  Google Scholar 

  65. Skaff H, Ilker MF, Coughlin EB et al (2002) Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. JAm Chem Soc 124: 5729–5733

    Article  CAS  Google Scholar 

  66. Sill K, Emrick T (2004) Nitroxide-mediated radical polymerization from CdSe nanoparticles. Chem Mater 16: 1240–1243

    Article  CAS  Google Scholar 

  67. Skaff H, Emrick T (2004) Reversible addition fragmentation chain transfer (RAFT) polymerization fro unprotected cadmium selenide nanoparticles. Angew Chem Int Ed 43: 5383–5386

    Article  CAS  Google Scholar 

  68. Esteves A, Bombalski L, Trindade T et al (2007) Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small 7: 1230–1236

    Article  CAS  Google Scholar 

  69. Edwards E, Chanana M, Wang D et al (2008) Stimuli-responsive resersible transport of nanoparticles across water/oil interfaces. Angew Chem Int Ed 47: 320–323

    Article  CAS  Google Scholar 

  70. Dabbousi B, Bawendi M, Onitsuka O et al (1995) Electroluminescence from CdSe quantum dot/polymer composites. Appl Phys Lett 66: 1316–1318

    Article  CAS  Google Scholar 

  71. Tessler N, Medvedev V, Kazes M et al (2002) Efficient near-infrared polymer nanocrystal lightemitting diodes. Science 295: 1506–1508

    Article  Google Scholar 

  72. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in conjugatedpolymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54: 17628–17637

    Article  CAS  Google Scholar 

  73. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277: 1232–1237

    Article  CAS  Google Scholar 

  74. Gao M, Richter B, Kirstein S (1997) White light electroluminescence from self-assembled QCdSe/PPV multilayer structures. Adv Mater 9: 802–805

    Article  CAS  Google Scholar 

  75. Rogach A, Koktysh D, Harrison M et al (2000) Layer-by-layer assembled films of HgTe nanocrystals with strong infrared emission. Chem Mater 12: 1526–1528

    Article  CAS  Google Scholar 

  76. Zhang H, Zhou Z, Liu K et al (2003) Controlled assembly of fluorescent multilayers from an aqueous solution of CdTe nanocrystals and nonionic carbazole-containing copolymers. J Mater Chem 13: 1356–1361

    Article  CAS  Google Scholar 

  77. Gao M, Sun J, Dulkeith E et al (2002) Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method. Langmuir 18: 4098–4102

    Article  CAS  Google Scholar 

  78. Mamedov AA, Belov A, Giersig M et al (2001) Nanorainbows: graded semiconductor films from quantum dots. J Am Chem Soc 123: 7738–7739

    Article  CAS  Google Scholar 

  79. Franzl T, Klar T, Schietinger S et al (2004) Exciton recycling in graded gap nanocrystal structures. Nano Lett 4: 1599–1603

    Article  CAS  Google Scholar 

  80. Hao E, Lian T (2000) Layer-by-layer assembly of CdSe nanoparticles based on hydrogen bonding. Langmuir 16: 7879–7881

    Article  CAS  Google Scholar 

  81. Zhang H, Yang B, Wang R et al (2002) Fabrication of a covalently attached self-assembly multilayer film based on CdTe nanoparticles. J Colloid Interf Sci 247: 361–365

    Article  CAS  Google Scholar 

  82. Donath E, Sukhorukov G, Caruso F et al (1998) Novel hollow polymer shells by colloidtemplated assembly of polyelectrolytes. Angew Chem Int Ed 37: 2201–2205

    Article  Google Scholar 

  83. Caruso F, Caruso R, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282: 1111–1114

    Article  CAS  Google Scholar 

  84. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13: 11–22

    Article  CAS  Google Scholar 

  85. Peyratout C, Dähne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43: 3762–3783

    Article  CAS  Google Scholar 

  86. Wang D, Rogach A, Caruso F (2002) Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Lett 2: 857–861

    Article  CAS  Google Scholar 

  87. Wang D, Möhwald H (2004) Template-directed colloidal self-assembly — the route to “top-down” nanochemical engineering. J Mater Chem 14: 459–468

    Article  CAS  Google Scholar 

  88. Arsenault A, Fournier-Bidoz S, Hatton B et al (2004) Towards the synthetic all-optical computer: science fiction or reality? J Mater Chem 14: 781–794

    Article  CAS  Google Scholar 

  89. Susha A, Caruso F, Rogach A et al (2000) Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloids Surf A 163: 39–44

    Article  CAS  Google Scholar 

  90. Rogach A, Susha A, Caruso F et al (2000) Nano-and microengineering: three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv Mater 12: 333–337

    Article  CAS  Google Scholar 

  91. Wang D, Rogach A, Caruso F (2003) Composite photonic crystals from semiconductor nanocrystals/polyelectrolyte-coated colloidal spheres. Chem Mater 15: 2724–2729

    Article  CAS  Google Scholar 

  92. Wang D, Caruso F (2001) Fabrication of heterogeneous macroporous materials based on a sequential electrostatic deposition process. Chem Commun 489–490

    Google Scholar 

  93. Westenhoff S, Kotov NA (2002) Quantun dot on a rope. J Am Chem Soc 124: 2448–2449

    Article  CAS  Google Scholar 

  94. Crisp MT, Kotov NA (2003) Preparation of nanoparticle coating on surfaces of complex geometry. Nano Lett 3: 173–177

    Article  CAS  Google Scholar 

  95. Yin W, Liu H, Yates M et al (2007) Fluorescent quantum dot-polymer nanocomposite particles by emulsification/solvent evaporation. Chem Mater 19: 2930–2936

    Article  CAS  Google Scholar 

  96. Han M, Gao X, Su J et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomoleucles. Nat Biotechnol 19: 631–635

    Article  CAS  Google Scholar 

  97. Kuang M, Wang D, Bao H et al (2005) Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv Mater 17: 267–270

    Article  CAS  Google Scholar 

  98. Gong Y, Gao M, Wang D et al (2005) Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties. Chem Mater 17: 2648–2653

    Article  CAS  Google Scholar 

  99. Duan H, Wang D, Sobal N et al (2005) Magnetic colloidosmes derived from nanoparticle interfacial self-assembly. Nano Lett 5: 949–952

    Article  CAS  Google Scholar 

  100. Li J, Hong X, Liu Y et al (2005) Highly photoluminescent CdTe/poly(N-isopropylacrylamide) temperature-sensitive gels. Adv Mater 17: 163–166

    Article  CAS  Google Scholar 

  101. Eichenbaum GM, Kiser PF, Dobrynin AV et al (1999) Investigation of the swelling response and loading of ionic microgels with drugs and proteins: the dependence on cross-link density. Macromolecules 32: 4867–4878

    Article  CAS  Google Scholar 

  102. Tekin E, Smith P, Hoeppener S et al (2007) Inkjet printing of luminescent CdTe nanocrystal-polymer composite. Adv Funct Mater 17: 23–28

    Article  CAS  Google Scholar 

  103. Gaponik N, Radtchenko I, Sukhorukov G et al (2002) Toward encoding combinatorial libraries: charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv Mater 14: 879–882

    Article  CAS  Google Scholar 

  104. Zhang H, Edwards E, Wang D et al (2006) Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys Chem Chem Phys 8: 3288–3299

    Article  CAS  Google Scholar 

  105. Edwards E, Wang D, Mohwald H (2007) Hierarchical organization of colloidal particles: from colloidal crystallization to supraparticle chemistry. Macromol Chem Phys 208: 439–445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Wang, D. (2008). Semiconductor nanocrystal-polymer composites: using polymers for nanocrystal processing. In: Rogach, A.L. (eds) Semiconductor Nanocrystal Quantum Dots. Springer, Vienna. https://doi.org/10.1007/978-3-211-75237-1_6

Download citation

Publish with us

Policies and ethics