Skip to main content

Protein folding and assembly in the endoplasmic reticulum

  • Chapter
Stress-Inducible Cellular Responses

Part of the book series: EXS ((EXS,volume 77))

Summary

The newly synthesized protein emerging through the ER membrane enters a unique environment for folding and assembly. Unlike the cytosol, the ER provides an oxidizing environment, has high levels of calcium, and contains enzymes for N-linked glycosylation. The growing nascent polypeptide chain is in many cases modified co-translationally with N-linked sugars and begins to fold while still attached to the ribosome. Disulfide bond formation stabilizes the tertiary structure of the protein. The in vivo folding and assembly of nascent proteins requires a delicate balance between allowing folding to occur and preventing incorrect interactions that would ultimately lead to improper folding and/or aggregation. In the past several years, two groups of proteins that interact transiently with incompletely folded and assembled proteins in the ER have been identified and characterized. The first group consists of enzymes that promote or stabilize protein folding. The second is composed of proteins termed “molecular chaperones” that bind transiently to nascent polypeptides and apparently prevent misfolding by masking those regions that could lead to incorrect interactions between protein domains or aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergeron, J.J., Brenner, M.B., Thomas. D.Y. and Williams, D.B. (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends. Biochem Sci. 19: 124–128.

    Article  PubMed  CAS  Google Scholar 

  • Blond Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F. and Gething, M.J. (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Bole, D.G., Hendershot, L.M. and Kearney, J.F. (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102: 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Bose, S., Mucke, M. and Freedman, R.B. (1994) The characterization of a cyclophilin-type peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen. Biochem J. 300: 871–875.

    PubMed  CAS  Google Scholar 

  • Brodsky, J.L. and Schekman, R. (1993) A Sec63p-BiP complex from yeast is required for protein translocation in a reconstituted proteoliposome. J. Cell Biol. 123: 1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Burns, K. and Michalak, M. (1993) Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett. 318: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Bush, K.T., Hendrickson, B.A. and Nigam, S.K. (1994) Induction of the FK506-binding protein, FKBP13, under conditions which misfold proteins in the endoplasmic reticulum. Biochem J. 303: 705–708.

    PubMed  CAS  Google Scholar 

  • Clairmont, C.A., De Maio, A. and Hirschberg, C.B. (1992) Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP78) and GRP94. J. Biol. Chem. 267: 3983–3990.

    PubMed  CAS  Google Scholar 

  • Cox, J.S., Shamu, C.E. and Walter, P. (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Dorner, A.J., Walsey, L.C. and Kaufman, R.J. (1992) Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 11: 1563–1571.

    PubMed  CAS  Google Scholar 

  • Fernandez, F.S., Trombetta, S.E., Hellman, U. and Parodi, A.J. (1994) Purification to homogeneity of UDP-glucose: glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 269: 30701–10706.

    CAS  Google Scholar 

  • Flaherty, K.M., DeLuca Flaherty, C. and McKay, D.B. (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346: 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G.C., Pohl, J., Flocco, M.T. and Rothman, J.E. (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R.B. (1989) Protein disulfide isomerase: multiple roles in the modification of nascent proteins. Cell 57: 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Freiden, P.J., Gaut, J.R. and Henershot, L.M. (1992) Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11: 63–70.

    PubMed  CAS  Google Scholar 

  • Gething, M.J. and Sambrook, J. (1992) Protein folding in the cell. Nature 355: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Gorlich, D. and Rapaport, T.A. (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75: 615–630.

    Article  PubMed  CAS  Google Scholar 

  • Gunther, R., Srinivasan, M., Haugejorden, S., Green, M., Ehbrecht, I.M. and Kuntzel, H. (1993) Functional replacement of the Saccharomyces cerevisiae Trgl/Pdil protein by members of the mammalian protein disulfide isomerase family. J. Biol. Chem. 268: 7728–7732.

    PubMed  CAS  Google Scholar 

  • Haas, I.G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein. Nature 306: 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C. and Helenius, A. (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266: 456–458.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C., Braakman, I. and Helenius, A. (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91: 913–917.

    Article  PubMed  CAS  Google Scholar 

  • Hasel, K.W., Glass, J.R., Godbout, M. and Sutcliffe, J.G. (1991) An endoplasmic reticulum- specific cyclophilin. Mol. Cell Biol. 11: 3484–3491.

    PubMed  CAS  Google Scholar 

  • Hebert, D.N., Foellmer, B. and Helenius, A. (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81: 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Hendershot, L.M., Wei, J.-Y., Gaut, J.R., Melnick, J., Aviel, S. and Argon, Y. (1996) Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants; PNAS 93: 5269–5274.

    Article  PubMed  CAS  Google Scholar 

  • Jannatipour, M. and Rokeach, L.A. (1995) The Schizosaccharomyces pombe homologue of the chaperone calnexin is essential for viability. J. Biol. Chem. 270: 4845–4853.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y.J., Albers, M.W., Lane, W.S., Bierer, B.E., Schreiber, S.L. and Burakoff, S.J. (1991) Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc. Natl. Acad. Sci. USA 88: 6677–6681.

    Article  PubMed  CAS  Google Scholar 

  • Kassenbrock, C.K. and Kelly, R.B. (1989) Interaction of heavy chain binding protein (BiP/ GRP78) with adenine nucleotides. EMBO J. 8: 1461–1467.

    PubMed  CAS  Google Scholar 

  • Kim, P.S. and Arvan, P. (1995) Calnexin and BiP act a sequential molecular chaperones during thyrogobulin folding in the endoplasmic reticulum. J. Cell Biol 128: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Klausner, R.D. and Sitia, R. (1990) Protein degradation in the endoplasmic reticulum. Cell 62: 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Knittler, M.R., Dirks, S. and Haas, I.G. (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: Quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 92: 1764–1768.

    Article  PubMed  CAS  Google Scholar 

  • Kozaki, K., Miyaishi, O., Asai, N., Iida, K., Sakata, K., Hayashi, M., Nishida, T., Matsuyama, M., Shimizu, S., Kaneda, T. and Saga, S. (1994) Tissue distribution of ERp61 and association of its increased expression with IgG production in hybridoma cells. Exp. Cell Res. 213: 348–358.

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462–464.

    Article  PubMed  CAS  Google Scholar 

  • LaMantia, M., Miura, T., Tachikawa, H., Kaplan, H.A., Lennarz, W.J. and Mizunaga, T. (1991) Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc. Natl Acad. Sci. USA 88: 4453–4457.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A.S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol 4: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Lilie, H., McLaughlin, S., Freedman, R. and Buchner, J. (1994) Influence of protein disulfide isomerase (PDI) on antibody folding in vitro. J. Biol Chem. 269: 14290–14296.

    PubMed  CAS  Google Scholar 

  • Lyles, M.M. and Gilbert, H.F. (1994) Mutations in the thioredoxin sites of protein disulfide isomerase reveal functional nonequivalence of the N- and C-terminal domains. J. Biol Chem. 269: 30946–30952.

    PubMed  CAS  Google Scholar 

  • Melnick, J., Aviel, S. and Argon, Y. (1992) The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol Chem. 267: 21303–21306.

    PubMed  CAS  Google Scholar 

  • Melnick, J., Dul, J.L. and Argon, Y. (1994) Sequential interaction of the chaperones BiP and Grp94 with immunoglobulin chains in the endoplasmic reticulum. Nature 370: 373–375.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.J. and Sambrook, J.F. (1992) A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast Kar2 (BiP) gene by unfolded proteins. EMBO J. 11: 2583–2593.

    PubMed  CAS  Google Scholar 

  • Mori, K., Wenzhen, M., Gething, M.J. and Sambrook, J. (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling form the ER to the nucleus. Cell 74: 743–756.

    Article  PubMed  CAS  Google Scholar 

  • Morjana, N.A. and Gilbert, H.F. (1991) Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry 30: 4985–4990.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, A., Satoh, M., Hirayoshi, K. and Nagata, K. (1992) Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum. J. Cell Biol 117: 903–914.

    Article  PubMed  CAS  Google Scholar 

  • Nauseef, W.M., McCormick, S.J. and Clark, R.A. (1995) Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J. Biol Chem. 270: 4741–4747.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C.V and Blobel, G. (1993) Lumenal proteins of the mammalian endoplasmic reticulum are required to complete protein translocation. Cell 73: 989–998.

    Article  PubMed  CAS  Google Scholar 

  • Noiva, R., Freedman, R.B. and Lennarz, W.J. (1993) Peptide binding to protein disulfide isomerase occurs at a site distinct form the active sites. J. Biol Chem. 268: 19210–19217.

    PubMed  CAS  Google Scholar 

  • Ou, W.-J., Cameron, PH., Thomas, D.Y. and Bergeron, J.J.M. (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776.

    Article  PubMed  CAS  Google Scholar 

  • Palleros, D.R., Reid, K.L., Shi, L., Welch, W.J. and Fink, A.L. (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365: 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Puig, A. and Gilbert, H.F (1994) Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. J. Biol Chem. 269: 25889–25896.

    PubMed  CAS  Google Scholar 

  • Rupp, K., Birnbach, U., Lundstrom, J., Van, P.N. and Soling, H.D. (1994) Effects of CaBP2, the rat analog of ERp72, and of CaBPl on the refolding of denatured reduced proteins. Comparison with protein disulfide isomerase. J. Biol Chem. 269: 2501–2507.

    PubMed  CAS  Google Scholar 

  • Sauk, J.J., Smith, T., Norris, K. and Ferreira, L. (1994) Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(1) chains of type I procollagen. J. Biol Chem. 269: 3941–3946.

    PubMed  CAS  Google Scholar 

  • Scidmore, M.A., Okamura, H.H. and Rose, M.D. (1993) Genetic interactions between Kar2 and Sec63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol. Biol Cell 4: 1145–1159.

    PubMed  CAS  Google Scholar 

  • Simons, J.F., Ferro-Novick, S., Rose, M.D. and Helenius, A. (1995) BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J. Cell Biol 130: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.J. and Koch, G.L. (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 8: 3581–3586.

    PubMed  CAS  Google Scholar 

  • Sousa, M.C., Ferrero Garcia, M.A. and Parodi, A.J. (1992) Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc: glycoprotein glucosyltransferase. Biochemistry 31: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Stafford, F.J. and Bonifacino, J.S. (1991) A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation, J. Cell Biol 115: 1225–1236.

    Article  PubMed  CAS  Google Scholar 

  • Urade, R., Takenaka, Y., and Kito, M. (1993) Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J. Biol Chem. 268: 22004–22009.

    PubMed  CAS  Google Scholar 

  • Wada, I., Rindress, D., Cameron, PH., Ou, W.J., Doherty, J.J., Louvard, D., Bell, A.W. Dignard, D., Thomas, D.Y. and Bergeron, J.J. (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol Chem. 266: 19599–19610.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wei, J., Hendershot, L.M. (1996). Protein folding and assembly in the endoplasmic reticulum. In: Feige, U., Yahara, I., Morimoto, R.I., Polla, B.S. (eds) Stress-Inducible Cellular Responses. EXS, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9088-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9088-5_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9901-7

  • Online ISBN: 978-3-0348-9088-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics