Skip to main content

Arbitrary primed PCR fingerprinting of RNA applied to mapping differentially expressed genes

  • Chapter
DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

Summary

Differential gene expression between various tissues and developmental stages or between cells in vitro under different growth conditions can be rapidly and efficiently compared using the RNA arbitrarily primed polymerase chain reaction (RAP) fingerprinting method (Welsh et al., 1992b; Liang and Pardee, 1992). In RAP, a primer of arbitrary sequence primes both first and second strand cDNA synthesis. The mixture of products is then PCR amplified and resolved electrophoretically, yielding highly reproducible fingerprints that are tissue-specific or growth condition-specific. Differences between fingerprints arise from differentially expressed genes, as verified by Northern blot analysis. RAP can be performed on the RNA samples using various DNA primers. Each two day experiment yields a sample of approximately twenty cDNA products per lane making the identification of differentially or developmentally regulated genes no longer rate limiting. Those PCR products representing genes that are regulated can be cloned from the gel and sequenced. Sequences can be compared to the DNA and protein sequence databases to identify homologs, motifs and members of gene families. The clones can be placed on the genetic map as Expression Tagged Sites (ETS, Adams et al., 1991a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson SA (1991) Growth factors and Cancer. Science 254: 1146–1145

    Article  Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991a) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656

    Article  Google Scholar 

  • Adams MD, Dubnick M, Kerlavage AR, Moreno RF, Kelley JM, Utterback TR, Nagle JW, Fields C, Venter JC (1991b) Sequence identification of 2,375 human brain genes. Nature 355: 632–634

    Article  Google Scholar 

  • Baylies MK, Bargiello TA, Jackson FR, Young MW (1987) Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326: 390–392

    Article  Google Scholar 

  • Bolander ME, Young MF, Fisher LW, Yamada Y, Termine JD (1988) Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (ovomucoid). Proc Natl Acad Sci USA 85: 2919–2923

    Article  Google Scholar 

  • Chirgwin J, Przybyla A, MacDonald R, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299

    Article  Google Scholar 

  • Dietrich W, Katz H, Lincoln SE, Shin H-S, Friedman J, Dracopli NC, Lander ES (1992) A genetic map of the mouse suitable for typic intraspecific crosses. Genetics 131: 423–447

    Google Scholar 

  • Feinstein PG, Schrader KA, Bakalyar HA, Tang W-J, Krupinski J, Gilman AG, Reed RR (1991) Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenyl cyclase from rat brain. Proc Natl Acad Sci USA 88: 10173–10177

    Article  Google Scholar 

  • Gieser L, Swaroop A (1992) Expressed sequence tags and chromosomal localization of cDNA clones from a subtracted retinal pigment epithelium library. Genomics 13: 873–876

    Article  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306: 234–238

    Article  Google Scholar 

  • Hamaguchi M, Sakamoto H, Tsuruta H, Sasaki H, Muto T, Sugimura T, Terada M (1992) Establishment of a highly sensitive and specific exontrapping system. Proc Natl Acad Sci USA 89: 9779–9783

    Article  Google Scholar 

  • Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251: 1239–1243

    Article  Google Scholar 

  • Ko MS (1990) An ‘equalized cDNA library’ by the reassociation of short double-stranded cDNAs. Nucleic Acids Res 18: 5705–5711

    Article  Google Scholar 

  • Liang P, Pardee A (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832

    Article  Google Scholar 

  • Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH (1992) Comparative map for mice and humans. Mammalian Genome 3: 480–536

    Article  Google Scholar 

  • Nakano Y, Nishihara T, Sasayama S, Miwa T, Kamada S, Kakunaga T (1991) Transcriptional regulatory elements in the 5’ upstream and first intron regions of the human smooth muscle (aortic type) and alpha-actin-encoding gene. Gene 99: 285–289

    Article  Google Scholar 

  • Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Ann Rev Genet 20:465–499

    Article  Google Scholar 

  • Palazzolo MJ, Hyde DR, VijayRaghavan K, Mecklenburg K, Benzer S, Meyerowitz E (1989) Use of a new strategy to isolate and characterize 436 Drosophila cDNA clones corresponding to RNAs detected in adult heads but not in early embryos. Neuron 3: 527–539

    Article  Google Scholar 

  • Polymeropoulos MH, Xiao H, Glodek A, Gorski M, Adams MD, Moreno RF, Fitzgerald MG, Venter JC, Merril CR (1992) Chromosomal assignment of 46 brain cDNAs. Genomics 12: 492–496

    Article  Google Scholar 

  • Rothstein JL, Johnson D, DeLoia JA, Skowronski J, Solter D, Knowles B (1992) Gene expression during preimplantation mouse development. Genes Dev 6: 1190–1201

    Article  Google Scholar 

  • Robertson, EJ (1987) Teratocarcinomas and embryonic stem cells: a practical approach (IRL Press, Oxford)

    Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428–431

    Article  Google Scholar 

  • Stallings RL, Ford AF, Nelson D, Torney DC, Hildebrand CE, Moyzis, RK (1991) Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10: 807–815

    Article  Google Scholar 

  • Stubbs L (1992) Long-range walking techniques in positional cloning strategies. Mammalian Genome 3: 127–142

    Article  Google Scholar 

  • Sutcliffe JG (1988) mRNA in the central nervous system. Annu Rev NeuroSci 11: 157–198

    Article  Google Scholar 

  • Wang J, Chenivesse X, Henglein B, Brechot C (1990) Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557

    Article  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18: 7213–7218

    Article  Google Scholar 

  • Welsh J, McClelland M (1991) Genomic fingerprinting with AP-PCR using pairwise combinations of primers: Application to genetic mapping of the mouse. Nucleic Acids Res 19: 5275–5279

    Article  Google Scholar 

  • Welsh J, McClelland M, Honeycutt RJ, Sobral BWS (1991a) Parentage determination in maize hybrids using arbitrarily primed PCR. Theoretical and Applied Genetics 82: 473–476

    Article  Google Scholar 

  • Welsh J, Petersen C, McClelland M (1991b) Polymorphisms generated by arbitrarily primed PCR in the mouse: Application to strain identification and genetic mapping. Nucleic Acids Res 19: 303–306

    Article  Google Scholar 

  • Welsh J, Pretzman C, Postic D, Saint Girons I, Baranton G, McClelland M (1992) Genomic fingerprinting by arbitrarily primed PCR resolves Borrelia burgdorferi into three distinct groups. Int J Systematic Bacteriol 42: 370–377

    Article  Google Scholar 

  • Welsh J, Chada K, Dalai SS, Ralph D, Chang R, McClelland M (1992b) Arbirarily primed PCR fingerprinting of RNA. Nucleic Acids Res 20: 4965–4970

    Article  Google Scholar 

  • Welsh J, Lui J-P, Efstradiatis A (1990) Cloning of PCR amplified total cDNA: Construction of a mouse oocyte cDNA library. Genetic Analysis 7: 5–17

    Article  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

McClelland, M., Chada, K., Welsh, J., Ralph, D. (1993). Arbitrary primed PCR fingerprinting of RNA applied to mapping differentially expressed genes. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics