Skip to main content

Brief introduction to human DNA fingerprinting

  • Chapter
DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

Abstract

In early 1985, Jeffreys et al. (1985b) described the first development of multilocus DNA fingerprints and speculated that these individual-specific DNA patterns might provide a powerful method for individual identification and paternity testing. At the time, it was thought that the implementation of these applications would be protracted, and that major legal problems would be encountered as DNA evidence proceeded from the research laboratory to the court room. Subsequent history showed that this prediction was unduly pessimistic. By April 1985 the first case, involving a UK immigration dispute, had been satisfactorily resolved by DNA fingerprinting (Jeffreys et al., 1985a). Shortly thereafter, DNA evidence in a paternity dispute was admitted in a UK civil court. DNA typing in criminal investigations saw its debut in October 1986 with the Enderby murder case, an investigation which led to the first instance of the release of a prime suspect proved innocent by DNA evidence (Gill and Werrett, 1987; Wong et al., 1987; see Wambaugh, 1989). By 1987, DNA typing results had been admitted in evidence in criminal courts in the UK and USA, and in 1988 the UK Home Office and Foreign and Commonwealth Office had ratified the use of DNA fingerprinting for the resolution of immigration disputes which hinge upon disputed family relationships (Home Office, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S, Muller CR, Epplen JT (1986) DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum Genet 74: 239–243

    Article  Google Scholar 

  • Armour JAL, Patel I, Thein SL, Fey MF, Jeffreys AJ (1989a) Analysis of somatic mutations at human minisatellite loci in tumours and cell lines. Genomics 4: 328–334

    Article  Google Scholar 

  • Armour JAL, Wong Z, Wilson V, Royle NJ, Jeffreys AJ (1989b) Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements. Nucleic Acids Res 17: 4925–4935

    Article  Google Scholar 

  • Armour JAL, Povey S, Jeremiah S, Jeffreys AJ (1990) Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8: 501–512

    Article  Google Scholar 

  • Balazs, I (1993) Population genetics of 14 ethnic groups using phenotypic data from VNTR loci. In Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (Eds), DNA fingerprinting: State of the Science. Basel: Birkhäuser Verlag

    Google Scholar 

  • Bellamy RJ, Inglehearn CF, Jalili IK, Jeffreys AJ, Bhattacharya SS (1991) Increased band sharing in DNA fingerprints of an inbred human population. Hum Genet 87: 341–347

    Article  Google Scholar 

  • Boerwinkle E, Xiong W, Fourest E, Chan L (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein b 3’ hypervariable region. Proc Nat Acad Sci USA 86: 212–216

    Article  Google Scholar 

  • Brookfield JFY (1989) Analysis of DNA fingerprinting data in cases of disputed paternity. IMA J of Mathematics Applied in Medicine Biology 6: 111–131

    Article  Google Scholar 

  • Budowle B (1993) VNTR population data from various reference groups and the significance of application to identity testing. In Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (Eds), DNA Fingerprinting: State of the Science. Basel: Birkhäuser Verlag

    Google Scholar 

  • Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RRC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48: 137–144

    Google Scholar 

  • Chakraborty R, Jin L (1993) A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. In Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (Eds), DNA Fingerprinting: State of the Science. Basel: Birkhäuser Verlag

    Google Scholar 

  • Chakraborty R, Kidd KK (1991) The utility of DNA typing in forensic work. Science 254: 1735–1739

    Article  Google Scholar 

  • Collick A, Dunn MG, Jeffreys AJ (1991) Minisatellite-binding protein Msbp-1 is a sequence-specific single-stranded DNA-binding protein. Nucleic Acids Res 19: 6399–6404

    Article  Google Scholar 

  • Collick A, Jeffreys AJ (1990) Detection of a novel minisatellite-specific DNA-binding protein. Nucleic Acids Res 18: 625–629

    Article  Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrametric tandem repeats. Am J Hum Genet 49: 746–756

    Google Scholar 

  • Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241–253

    Article  Google Scholar 

  • Evett IW, Werrett DJ, Buckleton JS (1989a) Paternity calculations from DNA multilocus profiles. J Forensic Sci Soc 29: 249–254

    Article  Google Scholar 

  • Evett IW, Werrett DJ, Smith AFM (1989b) Probabilistic analysis of DNA profiles. J Forensic Sci Soc 29: 191–196

    Article  Google Scholar 

  • Fowler SJ, Gill P, Werrett DJ, Higgs DR (1988) Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3’HVR. Hum Genet 79: 142–146

    Article  Google Scholar 

  • Gill P, Werrett DJ (1987) Exclusion of a man charged with murder by DNA fingerprinting. Forensic Science International 35: 145–148

    Article  Google Scholar 

  • Ginther C, Issel-Tarrver L, King M-C (1992) Identifying individuals by sequencing mitochondrial DNA from teeth. Nature Genetics 2: 135–138

    Article  Google Scholar 

  • Greenberg BD, Newbold JE, Sugino A (1983) Intraspecific nucleotide-sequence variability surrounding the origin of replication in human mitochondrial DNA. Gene 21: 33–49

    Article  Google Scholar 

  • Hagelberg E, Gray IC, Jeffreys AJ (1991) Identification of the skeletal remains of a murder victim by DNA analysis. Nature 352: 427–429

    Article  Google Scholar 

  • Hagelberg E, Sykes B, Hedges R (1990) Ancient bone DNA amplified. Nature 342: 485

    Article  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci 79: 6465–6469

    Article  Google Scholar 

  • Higuchi R, Blake ET (1989) Applications of the polymerase chain reaction in forensic science. In Banbury Report 32: DNA Technology, Forensic Science (eds J Ballantyne, G Sensabaugh, J Witkowski; Cold Spring Harbor Laboratory Press, 1989) pp 265–281

    Google Scholar 

  • Hill WG (1986) DNA fingerprint analysis in immigration test-cases. Nature 322: 290–291

    Article  Google Scholar 

  • Home Office (1988) DNA profiling in immigration casework. Report of a pilot trial by the Home Office and Foreign and Commonwealth Office (Home Office, London)

    Google Scholar 

  • Hopgood R, Sullivan KM, Gill P (1992) Strategies for automated sequencing of human mitochondrial DNA directly from PCR products. BioTechniques 13: 82–92

    Google Scholar 

  • Horn GT, Richards B, Klinger KW (1989) Amplification of a highly polymorphic VNTR segment by the polymerase chain reaction. Nucleic Acids Res 17: 2140

    Article  Google Scholar 

  • Jeffreys AJ, Brookfield JFY, Semeonoff R (1985a) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317: 818–819

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985c) Individual-specific “fingerprints ”of human DNA. Nature 316: 76–79

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL, Weatherall DJ, Ponder BAJ (1986) DNA “fingerprints ”and segregation analysis of multiple markers in human pedigrees. Am J Hum Genet 39: 11–24

    Google Scholar 

  • Jeffreys AJ, Wilson V, Kelly R, Taylor BA, Bulfield G (1987) Mouse DNA “fingerprints”: analysis of chromosome localization and germ-line stability of hypervariable loci in recombinant inbred strains. Nucleic Acids Res 15: 2823–2836

    Article  Google Scholar 

  • Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988a) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988b) Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16: 10953–10971

    Article  Google Scholar 

  • Jeffreys AJ, Neumann R, Wilson V (1990) Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60: 473–485

    Article  Google Scholar 

  • Jeffreys AJ, McLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209

    Article  Google Scholar 

  • Jeffreys AJ, Turner M, Debenham P (1991) The efficiency of multilocus DNA fingerprinting probes for individualization and establishment of family relationship, determined from extensive casework. Am J Hum Genet 48: 824–840

    Google Scholar 

  • Julier C, de Gouyon B, Georges M, Guenet J-L, Nakamura Y, Avner P, Lathrop GM (1990) Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Proc Nat Acad Sci USA 87: 4585–4589

    Article  Google Scholar 

  • Kelly R, Bulfield G, Collick A, Gibbs M, Jeffreys AJ (1989) Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development. Genomics 5: 844–856

    Article  Google Scholar 

  • Kelly R, Gibbs M, Collick A, Jeffreys AJ (1991) Spontaneous mutation at the hypervariable mouse minisatellites locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic events. Proc R Soc Lond B 245:235–245

    Article  Google Scholar 

  • Knowlton RG, Brown VA, Braman JC, Barker D, Schumm JW, Murray C, Takvorian T, Ritz J, Donnis-Keller H (1986) Use of highly polymorphic DNA probes for genotype analysis following bone marrow transplantation. Blood 68: 378–385

    Google Scholar 

  • Lander ES (1989) DNA fingerprinting on trial. Nature 339: 501–505

    Article  Google Scholar 

  • Lander ES (1991) Research on DNA typing catching up with courtroom application. Am J Hum Genet 48: 819–823

    Google Scholar 

  • Lewontin RC, Hartl DL (1991) Population genetics in forensic DNA typing. Science 254: 1745–1751

    Article  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44: 397–401

    Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622

    Article  Google Scholar 

  • Nakamura Y, Carlson M, Krapcho K, Kanamori M, White R (1988) New approach for isolation of VNTR markers. Am J Hum Genet 43: 854–859

    Google Scholar 

  • National Research Council (1992) DNA Technology and Forensic Science. National Academy Press, Washington DC

    Google Scholar 

  • Peake IRRR, Bowen D, Bignell P, Liddell MB, Sadler JE, Standen G, Bloom AL (1990) Family studies and prenatal diagnosis in severe von Willebrand disease by polymerase chain reaction amplification of a variable number tandem repeat region of the von Willebrand factor gene. Blood 76: 555–561

    Google Scholar 

  • Pena SDJ, Macedo AM, Braga VMM, Rumjanek FD, Simpson AJG (1990) F10, the gene for the glycine-rich major eggshell protein of Schistosoma mansoni recognizes a family of hypervariable minisatellites in the human genome. Nucl Acids Res 18: 7466

    Article  Google Scholar 

  • Pena SDJ, Souza KT, Andrade M, Chakraborty R (1993) Allelic associations of two polymorphic microsatellites in intron 40 of the human von Willebrand factor gene. Submitted for publication

    Google Scholar 

  • Ploos van Amstel HK, Reitsma P (1991) Tetranucleotide repeat polymorphism in the vWF gene. Nucl Acids Res 18: 4957

    Article  Google Scholar 

  • Riggins GL, Lokey LK, Chastain JL, Leiner HA, Sherman SL, Wilkinson KD, Warren ST (1992) Human genes containing polymorphic trinucleotide repeats. Nature Genetics 2: 186–191

    Article  Google Scholar 

  • Royle NJ, Clarkson RE, Wong Z, Jeffreys AJ (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352–360

    Article  Google Scholar 

  • Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324: 163–166

    Article  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Article  Google Scholar 

  • Santos FR, Pena SDJ, Epplen JT (1993) Genetic and population study of a Y-linked tetranucleotide repeat polymorphism with a single non-isotopic technique. Hum Genet 90: in press

    Google Scholar 

  • Smith JC, Anwar R, Riley J, Jenner D, Markham AF, Jeffreys AJ (1990) Highly polymorphic minisatellite sequences: allele frequencies and mutation rates for five locus specific probes in a Caucasian population. J For Sci Soc30: 19–32

    Google Scholar 

  • Stallings RL, Ford AF, Nelson D, Torney DC, Hildebrand CE, Moyzis RK (1991) Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genomics 10: 807–815

    Article  Google Scholar 

  • Sullivan KM, Hopgood R, Lang B, Gill P (1991) Automated amplification and sequencing of human mitochondrial DNA. Electrophoresis 12: 17–21

    Article  Google Scholar 

  • Swallow DM, Gendler S, Griffith B, Corney G, Taylor-Papadimitriou J, Bramwell ME (1987) The human tumour-associated epithelium mucins are coded by an expressed hypervariable gene locus PUM. Nature 328: 82–84

    Article  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17: 6463–6471

    Article  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res 12: 4127–4138

    Article  Google Scholar 

  • US Congress Office of Technology Assessment (1990) Genetic witness: forensic uses of DNA tests, OTA-BA-438 (Washington DC: US Government Printing Office)

    Google Scholar 

  • Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Christophe D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684

    Article  Google Scholar 

  • Yamazaki H, Nomoto S, Mishima Y, Kominami R (1992) A 35-kDa protein binding to a cytosine-rich strand of hypervariable minisatellite DNA. J Biol Chem 267: 12311–12316

    Google Scholar 

  • Yandell DW, Dryja TP (1989) Detection of DNA sequence polymorphisms by enzymatic amplification and direct genomic sequencing. Am J Hum Genet 45: 547–555

    Google Scholar 

  • Wahls WP, Swenson G, Moore PD (1991) Two hypervariable minisatellite DNA binding proteins. Nucleic Acids Res 19: 3269–3274

    Article  Google Scholar 

  • Weissenbach J, Gyaypay G, Dib C, Vignal A, Morisette J, Milasseau P, Vaysseiz G, Lathrop M (1992) A second generation linkage map of the human genome. Nature 359: 794–801

    Article  Google Scholar 

  • Wrogemann K, Biancalana V, Devys D, Imbert G, Trottier Y, Mandel J-L (1993) Microsatellites and disease: a new paradigm. In Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (Eds), DNA Fingerprinting: State of the Science. Basel: Birkhäuser Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Jeffreys, A.J., Pena, S.D.J. (1993). Brief introduction to human DNA fingerprinting. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics