Skip to main content

Sex chromosomes and sex-determining genes: insights from marsupials and monotremes

  • Chapter
Genes and Mechanisms in Vertebrate Sex Determination

Part of the book series: Experientia Supplementum ((EXS,volume 91))

Summary

Comparative studies of the genes involved in sex determination in the three extant classes of mammals, and other vertebrates, has allowed us to identify genes that are highly conserved in vertebrate sex determination and those that have recently evolved roles in one lineage. Analysis of the conservation and function of candidate sex determining genes in marsupials and monotremes has been crucial to our understanding of their function and positioning in a conserved mammalian sex-determining pathway, as well as their evolution. Here we review comparisons between genes in the sex-determining pathway in different vertebrates, and ask how these comparisons affect our views on the role of each gene in vertebrate sex determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hope RM, Cooper S and Wainwright B (1990) Globin macromolecular sequences in marsupials and monotremes. In: Mammals from Pouches and Eggs: Genetic Breeding and Evolution of Marsupials and Monotremes, Graves JAM, Hope RM and Cooper DW (eds), CSIRO Australia, Melbourne

    Google Scholar 

  2. Sharman GB, Hughes RL and Cooper DW (1990) The chromosomal basis of sex differentiation in marsupials. In: Mammals from Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes, pp. 309–324, Graves JAM, Hope RM and Cooper DW (eds), CSIRO Australia, Melbourne

    Google Scholar 

  3. Cooper DW, Johnston PG, Watson JM and Graves JAM (1993) X-inactivation in marsupials and monotremes. Dev Biol 4: 117–128

    Article  Google Scholar 

  4. Vogt PH (1997) Report of the third international workshop on Y chromosome mapping. Cytogenet Cell Genet 79: 1–20

    Article  PubMed  CAS  Google Scholar 

  5. Graves JAM, Wakefield MJ and Toder R (1998) The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum Mol Genet 7: 1991–1996

    Article  PubMed  CAS  Google Scholar 

  6. Sharp P (1982) Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86: 27–47

    Article  PubMed  CAS  Google Scholar 

  7. Murtagh CE (1977) A unique cytogenetic system in monotremes. Chromosoma 65: 37–57

    Article  Google Scholar 

  8. Graves JAM (1995) The origin and function of the mammalian Y chromosome and Y-borne genes — an evolving understanding. Bioessays 17: 311–320

    Article  PubMed  CAS  Google Scholar 

  9. Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AH, Lovell-Badge R et al (1992) Evolution of sex determination and the Y chromosome: STY-related sequences in marsupials. Nature 359: 531–533

    Article  PubMed  CAS  Google Scholar 

  10. Delbridge ML, Ma K, Subbarao MN, Cooke HJ, Bhasin S and Graves JAM (1998) Evolution of mammalian HNRPG and its relationship with the putative azoospermia factor RBM. Mamm Genome 9: 168–170

    Article  PubMed  CAS  Google Scholar 

  11. Mitchell MJ, Woods DR, Wilcox SA, Graves JAM and Bishop CE (1991) Marsupial Y chromosome encodes a homologue of the mouse Y-linked candidate spermatogenesis gene Ubely. Nature 159: 528–531

    Google Scholar 

  12. Agulnik AI, Mitchell MJ, Lerner JL, Woods DR and Bishop CE (1994) A mouse Y chromosome gene encoded by a region essential for spermatogenesis and expression of male-specific minor histocompatibility antigens. Hum Mol Genet 3: 873–878

    Article  PubMed  CAS  Google Scholar 

  13. Toder R and Graves JAM (1998) CSF2RA, ANT3 and STS are autosomal in marsupials implications for the origin of the pseudoautosomal region of mammalian sex chromosomes. Mamm Genome 9: 373–376

    Article  PubMed  CAS  Google Scholar 

  14. Ohno S (1967) Sex chromosomes and sex linked genes. Springer, New York

    Book  Google Scholar 

  15. Graves JAM (1998) Evolution of the mammalian Y chromosome and sex determining genes. J Exp Zool 281: 472–481

    Article  PubMed  CAS  Google Scholar 

  16. Charlesworth B (1991) The evolution of sex chromosomes. Science 251: 1030–1033

    Article  PubMed  CAS  Google Scholar 

  17. Graves JAM, Disteche CM and Toder R (1998) Gene dosage in the evolution and function of mammalian sex chromosomes. Cytogenet Cell Genet 80: 94–103

    Article  PubMed  CAS  Google Scholar 

  18. Page DC, Mosher R, Simpson EM, Fisher EM, Mardon G, Pollack J et al (1987) The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51: 1091–1104

    Article  PubMed  CAS  Google Scholar 

  19. Sinclair AH, Foster JW, Spender JA, Page DC, Palmer M, Goodfellow PN et al (1988) Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336: 780–783

    Article  PubMed  CAS  Google Scholar 

  20. Koopman P, Gubbay J, Collignon J and Lovell-Badge R (1989) ZFY gene expression patterns are not compatible with a primary role in mouse sex determination. Nature 342: 940–942

    Article  PubMed  CAS  Google Scholar 

  21. Palmer MS, Sinclair AH, Berta P, Ellis NA, Goodfellow PN, Abbas NE et al (1989) Genetic evidence that ZFY is not the testis-determining factor. Nature 342: 937–939

    Article  PubMed  CAS  Google Scholar 

  22. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ et al (1990) A gene from the human sex determining region encodes a protein with homology to a conserved DNA binding motif. Nature 346: 240–244

    Article  PubMed  CAS  Google Scholar 

  23. Hawkins JR (1994) Sex determination. Hum Mol Genet 3: 1463 –1467

    PubMed  CAS  Google Scholar 

  24. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A et al (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245–250

    Article  PubMed  CAS  Google Scholar 

  25. Koopman P, Gubbay J, Vivian N, Goodfellow P and Lovell-Badge R (1991) Male development of chromosomal female mice transgenic for SRY. Nature 351: 117–121

    Article  PubMed  CAS  Google Scholar 

  26. Foster JW, Brennen FE, Hampikian GK, Goodfellow PN, Sinclair AH, Lovell-Badge R et al (1992) The human sex determining gene SRY detects homologous sequences on the marsupial Y chromosome. Nature 359: 531–533

    Article  PubMed  CAS  Google Scholar 

  27. Foster JW and Graves JAM (1994) An SRY related sequence of the Marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA 91: 1927–1931

    Article  PubMed  CAS  Google Scholar 

  28. O’Neill RJ, Brennan FE, Delbridge ML, Crozier RH and Graves JAM (1998) De novo insertion of an intron into the mammalian sex determining gene, SRY. Proc Natl Acad Sci USA 95: 1653–1657

    Article  Google Scholar 

  29. Dubin RA and Ostrer H (1994) SRY is a transcriptional activator. Mol Endocrinol 8: 1182–1192

    Article  PubMed  CAS  Google Scholar 

  30. Bowles J, Cooper L, Berkman J and Koopman P (1999) Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nature Genetics 22: 405–408

    Article  PubMed  CAS  Google Scholar 

  31. Poulat F, Desantabarbara P, Desclozeaux M, Soullier S, Moniot B, Bonneaud N et al (1997) The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J Biol Chem 272: 7167–7172

    Article  PubMed  CAS  Google Scholar 

  32. Koopman P, Munsterberg A, Capel B, Vivian N and Lovell-Badge R (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348: 450–452

    Article  PubMed  CAS  Google Scholar 

  33. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: 1019–1030

    Article  PubMed  CAS  Google Scholar 

  34. McElreavy K, Vilain E, Abbas N, Costa JM, Souleyreau N, Kucheria K et al (1992) XY sex reversal associated with a deletion 5’ to the SRY “HMG box” in the testis-determining region. Proc Natl Acad Sci USA 89: 11016–11020

    Article  PubMed  CAS  Google Scholar 

  35. Harry JL, Koopman P, Brennan FE, Graves JAM and Renfree MB (1995) Wide spread expression of the testis determining gene SRY in a marsupial. Nat Genet 11: 347–349

    Article  PubMed  CAS  Google Scholar 

  36. Ferrari S, Harley V, Pontiggia A, Goodfellow P, Lovell-Badge R and Bianchi ME (1992) A sharp angle in DNA is the major determinant in DNA recognition by the SRY protein as it is for HMG 1 protein. EMBO J 11: 4497–4509

    PubMed  CAS  Google Scholar 

  37. Pontiggia A, Whitfield S, Goodfellow PN, Lovellbadge R and Bianchi MR (1995) Evolutionary conservation in the DNA-binding and bending properties of HMG boxes from SRY proteins of primates. Gene 154: 277–280

    Article  PubMed  CAS  Google Scholar 

  38. Cohen DR, Sinclair AH and McGovern JD (1994) The SRY protein enhances transcription of a FOS-related antigen 1 promoter construct. Proc Natl Acad Sci USA 91: 4372–4376

    Article  PubMed  CAS  Google Scholar 

  39. Koopman P (1995) The molecular biology of SRY and its role in sex determination in mammals. Reprod Fertil Dev 7: 713–722

    Article  PubMed  CAS  Google Scholar 

  40. McElreavey K, Rappaport R, Vilain E, Abbas N, Richaud F, Lortat-Jacob S et al (1992) A minority of 46,XX true hermaphrodites are positive for the Y-DNA sequence including SRY. Hum Genet 90: 121–125

    Article  PubMed  CAS  Google Scholar 

  41. Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Graves JAM et al (1995) Absence of SRY in a species of the vole ellobius. Nature Genet 11: 117–118

    Article  PubMed  CAS  Google Scholar 

  42. Harley VR, Lovell-Badge R, Goodfellow PN and Hextall PJ (1996) The HMG box of SRY is a calmodulin binding domain. FEBS Lett. 391: 24–28

    Article  PubMed  CAS  Google Scholar 

  43. Lee MM and Donahoe PK (1993) Mullerian inhibiting substance: A gonadal hormone with multiple functions. Endocr Rev 14: 152–160

    PubMed  CAS  Google Scholar 

  44. Haqq CM, King CY, Ukiyama E, Falsafi S, Haqq TN, Donahoe PK et al (1994) Molecular basis of mammalian sex determination: activation of Mullerian inhibitory substance gene expression by SRY. Science 266: 1494–1500

    Article  PubMed  CAS  Google Scholar 

  45. Jost A, Vigier B, Prepin J and Perchellet J (1972) Freemartins in cattle: the first steps of sexual organogenesis. J Reprod Fertil 29: 349–379

    Article  PubMed  CAS  Google Scholar 

  46. Ingraham HA, Lala DS, Ikeda Y, Luo XR, Shen WH, Nachtigal MW et al (1994) The nuclear receptor steroidagenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 8: 2302–2312

    Article  PubMed  CAS  Google Scholar 

  47. Shen WH, Moore CCD, Ikeda Y, Parker KL and Ingraham H (1994) Nuclear receptor steroidagenic factor 1 regulates the Mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 11: 651–661

    Article  Google Scholar 

  48. Tommerup N, Schempp W, Meinecke P, Pedersen S, Bolund L, Brandt C et al (1993) Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1. Nature Genet A: 170–174

    Article  Google Scholar 

  49. Foster JW, Dominquez MA, Guioli S, Kwok C, Weiler PA, Stevanovic M et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372: 525–530

    Article  PubMed  CAS  Google Scholar 

  50. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79: 1111–1120

    Article  PubMed  CAS  Google Scholar 

  51. Wright E, Hargrave R, Christiansen J, Cooper L, Kun J, Evans T et al (1995) The SRY-related Sox9 gene is expressed during chondrogenesis in mouse embryos. Nature Genet 9: 15–20

    Article  PubMed  CAS  Google Scholar 

  52. Bell DM, Leung KKH, Wheatley SC, Ng LJ, Zhou S, Ling KW et al (1997) SOX9 directly regulates the type-II collagen gene. Nature Genet 16: 174–178

    Article  PubMed  CAS  Google Scholar 

  53. Lefebre V, Huang W, Harley V, Goodfellow PN and de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the Proal (II) collagen gene. Mol Cell Biol 17:2336–2346

    Google Scholar 

  54. Sudbeck P, Schmitz ML, Baeuerle PA and Scherer G (1996) Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nature Genet 13: 230–232

    Article  PubMed  CAS  Google Scholar 

  55. Kent J, Wheatley SC, Andrews JE, Sinclair AH and Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122: 2813–2822

    PubMed  CAS  Google Scholar 

  56. Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S and Shiba T (1997) Rainbow trout SOX9 cDNA cloning, gene structure and expression. Gene 202: 167–170

    Article  PubMed  CAS  Google Scholar 

  57. Oreal E, Pieau C, Mattei M, Josso N, Picard J, Carre-eusebe D et al (1998) Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Dev Dynam 21:522–532

    Article  Google Scholar 

  58. Morais da Silva S, Hacker A, Harley V, Martineau J, Capel B, Goodfellow P et al (1996) SOX9 expression during gonadal development implies a conserved role for the gene in Sertoli cell differentiation in mammals and birds. Nature Genet 14: 62–68

    Article  Google Scholar 

  59. Western PS, Harry JL, Graves JAM, Sinclair AH (1999) Temperature-dependent sex determination: Upregulation of SOX9 expression after commitment to male development. Dev Dynamics 214: 171–177

    Article  CAS  Google Scholar 

  60. Bardoni B, Zanaria E, Guioli S, Floridia G, Worley K, Tonini G et al (1994) A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet 7: 497–501

    Article  PubMed  CAS  Google Scholar 

  61. Zanaria E, Muscatelli F, Bardoni B, Strom T, Guioli S, Guo W et al (1994) An unusual member of the nuclear hormone receptor super family responsible for X-linked adrenal hypoplasia congenita. Nature 372: 635–641

    Article  PubMed  CAS  Google Scholar 

  62. Muscatelli F, Strom T, Walker AP, Zanaria E, Recan D, Meindi A et al (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadatrophic hypogonadism. Nature 312: 672–676

    Article  Google Scholar 

  63. Zazopoulos E, Lalli E, Stocco DM and Sassone-Corsi P (1997) DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature 390: 311–315

    Article  PubMed  CAS  Google Scholar 

  64. Swain A, Zanaria E, Hacker A, Lovellbadge R and Camerino G (1996) Mouse DAX1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nature Genet 12: 404–409

    Article  PubMed  CAS  Google Scholar 

  65. Guo WW, Burris TP and McCabe ERB (1995) Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadatrophic hypogonadism, in the hypothalamic-pituary-adrenal gonadal axis. Biochem Mol Med 56: 8–13

    Article  PubMed  CAS  Google Scholar 

  66. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, Lalli E et al (1996) Steroidogenic factor 1 and DAX-1 co-localise in multiple cell lineages — potential links in endocrine development. Mol Endocrinol 10: 1261–1272

    Article  PubMed  CAS  Google Scholar 

  67. Majdic G and Saunders PTK (1996) Differential patterns of expression of DAX-1 and steroidogenic factor 1 (SF1) in the foetal rat testis. Endocrinology 137: 3586–3589

    Article  PubMed  CAS  Google Scholar 

  68. Veitia R, Nunes M, Brauner R, Doco-Fenzy M, Joanny-Flinois O, Jaubert F, Lortat-Jacob S, Fellous M and McElreavey (1997) Deletions of distal 9p associated with 46,XY male to female sex reversal: definition of the breakpoints at 9p23.3-p24.1. Genomics 41: 271–274

    Article  PubMed  CAS  Google Scholar 

  69. McDonald MT, Flejter W, Sheldon S, Putzi MJ and Gorski JL (1997) XY sex reversal and gonadal dysgenesis due to 9p24 monosomy. Am J Med Genet 73: 321–326

    Article  PubMed  CAS  Google Scholar 

  70. Smith CA, McClive PJ, Western PS, Reed KJ and Sinclair AH (1999) Conservation of a sex determining gene. Nature 402: 601–602

    Article  PubMed  CAS  Google Scholar 

  71. Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J and Zarkower D (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391: 691–695

    Article  PubMed  CAS  Google Scholar 

  72. Raymond CS, Parker ED, Kettlewell JR, Brown LG, Page DC, Kusz K, Jaruzelska J, Rein-berg Y, Flejterg WL, Bardwell VJ, Hirsch B and Zarkower D (1999) A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 8: 989–996

    Article  PubMed  CAS  Google Scholar 

  73. Nanda 1, Sick C, Munster U, Kaspers B, Schartl M, Staeheli P et al (1998) Sex chromosome linkage of chicken and tuck type I interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds. Chromosoma 107: 204–210

    Article  PubMed  CAS  Google Scholar 

  74. Nanda I, Shan Z, Schartl M, Burt DW, Koehler M, Nothwang H-G et al (1999) 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genet 21: 258–259

    Article  PubMed  CAS  Google Scholar 

  75. Ion A, Telvi L, Chaussain JL, Galacteros F, Valayer J, Fellous M et al (1996) A novel mutation in the putative DNA helicase XH2 is responsible for male-to-female sex reversal associated with an atypical form of the ATRX syndrome. Am J Hum Genet 58: 1185–1191

    PubMed  CAS  Google Scholar 

  76. Villard L, Gecz J, Colleaux L, Lossi AM, Chelly J, Ishikawa-Brush Y et al (1995) Construction of a YAC contig spanning the Xq13.3 subband. Genomics 26: 115–122

    Article  PubMed  CAS  Google Scholar 

  77. Eicher EM, Washburn LL, Schork NJ, Lee K, Shown EP, Xu X et al (1996) Sex-determining genes on mouse autosomes identified by linkage analysis of C57BL/6J-YPOS sex reversal. Nature Genet 14: 206–209

    Article  PubMed  CAS  Google Scholar 

  78. Goodfellow P (1983) Sex is simple. Nature 304: 221

    Google Scholar 

  79. Foster JW and Graves JAM (1994) An SRY-related sequence on the marsupial X chromosome: Implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci USA 91: 1927–1931

    Article  PubMed  CAS  Google Scholar 

  80. Stenovic M, Lovell-Badge R, Collignon J and Goodfellow PN (1993) SOX3 is an X-linked gene related to SRY. Hum Mol Genet 2: 2013–2018

    Article  Google Scholar 

  81. Collignon J, Sockanathan S, Hacker A, Cohen-Tannoudji M, Norris D, Rastan S et al (1996) A comparison of the properties of SOX3 with SRY and two related genes, SOX1 and SOX2. Development 122: 509–520

    PubMed  CAS  Google Scholar 

  82. Koyano S, Ito M, Takamatsu N, Takiguchi S and Shiba T (1997) The Xenopus SOX3 gene expressed in oocytes of early stages. Gene 188: 101–107

    Article  PubMed  CAS  Google Scholar 

  83. Penzel R, Oschwald R, Chen YL, Tacke L and Grunz H (1997) Characterisation and early embryonic expression of a neural specific transcription factor XSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677

    PubMed  CAS  Google Scholar 

  84. Graves JAM (1998) Interactions between SRY and SOX genes in mammalian sex determination. Bioessays 20: 264–269

    Article  PubMed  CAS  Google Scholar 

  85. Huang B, Wang S, Lamb AN, Bartley J (1999) Autosomal XX sex reversal caused by duplication of SOX9. J Med Genet 87: 349–353

    Article  CAS  Google Scholar 

  86. Chandra HS (1984) A model for mammalian male determination based on a passive Y chromosome. Mol Gen Genet 193: 384–388

    Article  PubMed  CAS  Google Scholar 

  87. Pask A, Toder R, Wilcox SA, Camerino G and Graves JAM (1997) The candidate sex reversing DAX-1 gene is autosomal in marsupials — implications for the evolution of sex determination in mammals. Genomics 41: 422–426

    Article  PubMed  CAS  Google Scholar 

  88. Lingenfelter PA, Adler DA, Poslinski D, Thomas S, Elliott RW, Chapman VM and Disteche CM (1998) Escape from X inactivation of Smcx is preceded by silencing during mouse development. Nature 18: 212–213

    CAS  Google Scholar 

  89. Gibbons RJ, Picketts DJ, Villard L and Higgs DR (1995) Mutations in a putative global transcriptional regulators cause X-linked mental retardation with — thalassemia (ATR-X syndrome). Cell 80: 837–845

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this chapter

Cite this chapter

Pask, A., Graves, J.A.M. (2001). Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. In: Scherer, G., Schmid, M. (eds) Genes and Mechanisms in Vertebrate Sex Determination. Experientia Supplementum, vol 91. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7781-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7781-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-7783-1

  • Online ISBN: 978-3-0348-7781-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics