Skip to main content

Structure, Diversity, and Ionic Permeability of Neuronal and Muscle Acetylcholine Receptors

  • Chapter
Nonselective Cation Channels

Part of the book series: EXS ((EXS,volume 66))

  • 78 Accesses

Abstract

Nicotinic acetylcholine receptors (nAChRs) form a family of ligand-gated, cation-selective channels that are concentrated at cholinergic synapses on vertebrate neurons and muscle cells. At the neuromuscular endplate, muscle nAChRs bind acetylcholine released by the persynaptic motor neuron. The receptors then undergo a conformational change that opens their ion channels. Cations move passively through the water-filled pores down their electrochemical gradients, completing synaptic transmission by depolarizing the postsynaptic muscle. The channel only weakly discriminates among permeant cations, which include all monovalent and divalent cations that are small enough to fit through the narrowest cross section. The membrane-spanning region of the pore is lined by uncharged domains that are bracketed by residues with net negative charge. The pore has large entrance vestibules, especially facing extracellularly. The narrowest cross-section is located near the cytoplasmic end of the membrane-spanning region, and this short narrow region probably provides the main cation binding site that is directly in the permeation pathway. Neuronal nAChRs share many of the properties of muscle nAChRs, but the neuronal receptor subtypes are more heterogenous genetically, pharmacologically, and functionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, DJ, Dwyer, TM, Hille, B (1980). The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75:493–510.

    Article  Google Scholar 

  • Adams DJ, Nonner W, Dwyer TM, Hille B (1981). Block of endplate channels by permeant cations in frog skeletal muscle. J. Gen. Physiol. 78:593–615.

    Article  Google Scholar 

  • Aguayo LG, Pazhenchevsky B, Daly JW, Albuquerque EX (1981). The ionic channel of the acetylcholine receptor: regulation by sites outside and inside the cell membrane which are sensitive to quaternary ligands. Molec. Pharm. 20:345–355.

    Google Scholar 

  • Aquilonius S-M, Gillberg P-G, editors (1990). Cholinergic neurotransmission: functional and clinical aspects. Amsterdam: Elsevier.

    Google Scholar 

  • Ascher P, Large WA, Rang HP (1979). Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J. Physiol. 295:139.

    Google Scholar 

  • Boulter J, Connolly J, Deneris ES, Goldman D, Heinemann S, Patrick J (1987). Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. 84:7763–7767.

    Article  Google Scholar 

  • Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S, Patrick J (1986). Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit. Nature 319:368–374.

    Article  Google Scholar 

  • Brown DA, Docherty RJ, Halliwell JV (1984). The action of cholinomimetic substances on impulse conduction in the habenulointerpeduncular pathway of the rat. J. Physiol. 353:101–109.

    Google Scholar 

  • Carbonetto ST, Fambrough DM, Muller KJ (1978). Nonequivalence of α-bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. USA 75:1016–1020.

    Article  Google Scholar 

  • Chang HW, Neumann E (1976). Dynamic properties of isolated acetylcholine receptor proteins: release of calcium ions caused by ACh binding. Proc. Natl. Acad. Sci. USA 73:3364–3368.

    Article  Google Scholar 

  • Changeux J-P, Revah, F (1987). The acetylcholine receptor molecule: allosteric sites and the ion channel. Trends Neurosci. 10:245–250.

    Article  Google Scholar 

  • Clarke PS, Schwartz RD, Paul SM, Pert CB, Pert A (1985). Nicotinic binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-nicotine, and 125I-α-bungarotoxin. J Neurosci. 5:1307–1315.

    Google Scholar 

  • Charnet P, Labarca C, Leonard RJ, Vogelaar NJ, Czyzyk L, Gouin A, Davidson N, Lester HA (1990). An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Neuron 4:87–95.

    Article  Google Scholar 

  • Chiappinelli VA (1983). Kappa-bungarotoxin: a probe for the neuronal nicotinic receptor in the avian ciliary ganglion. Brain. Res. 277:9–22.

    Article  Google Scholar 

  • Claudio T (1989). Molecular genetics of acetylcholine receptor-channels. In: Frontiers in Molecular Biology: Molecular Neurobiology. Glover DM, Harnes BD, editors. Oxford: IRL Press, pp. 63–142.

    Google Scholar 

  • Cohen BN, Labarca C, Davidson N, Lester HA (1992). Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and for alkali metal cations. J. Gen. Physiol. 100:373–400.

    Article  Google Scholar 

  • Conti-Tronconi BA, Dunn SMJ, Barnard EA, Dolly O.J, Lai FA, Ray N, Raftery MA (1985). Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins. Proc. Natl. Acad. Sci. USA 82:5208–5212.

    Article  Google Scholar 

  • Cooper E, Couturier S, Ballivet M (1991). Pentameric structure and subunit stoichiometry of a neuronal actylcholine receptor. Nature 350:235–238.

    Article  Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990). A neuronal nicotinic acetylcholine receptor subunit (α 7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-bungaro-toxin. Neuron 5:847–856.

    Article  Google Scholar 

  • Dani JA (1986). Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys. J. 49:607–618.

    Article  Google Scholar 

  • Dani JA (1988). Ionic permeability and the open channel structure of the nicotinic acetylcholine receptor. In: Transport Through Membranes: Carriers, Channels and Pumps. Pullman A, editor. Dordrecht, Holland: D. Reidel Publishing Co., pp. 297–319.

    Chapter  Google Scholar 

  • Dani JA (1989a). Open channel structure and ion binding sites of the nicotinic acetylcholine receptor channeh. J. Neurosci. 9:882–890.

    Google Scholar 

  • Dani JA (1989b). Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. Trends Neurosci. 12:125–128.

    Article  Google Scholar 

  • Dani JA Eisenman G (1987). Monovalent and divalent cation permeation in acetylcholine receptor channels: ion transport related to structure. J. Gen. Physiol. 89:959–983.

    Article  Google Scholar 

  • Dani JA, Levitt DG (1990). Diffusion and kinetic approaches to describe permeation in ion channels. J. Theoret. Biol. 146:289–301.

    Article  Google Scholar 

  • Decker ER, Daini JA (1990). Calcium permeability of the nicotinic acetylcholine receptor: the single-channel calcium influx is significant. J. Neurosci. 10:3413–3420.

    Google Scholar 

  • Del Castillo J, Katz B (1957). A study of curare action with an electrical micro method. Proc. Roy. Soc. Lond. B 147:339–356.

    Article  Google Scholar 

  • Deneris ES, Connolly J, Rogers SW, Duvoisin R (1991). Pharmacological and functional diversity of neuronal micotinic acetylcholine receptors. Trends Pharm. Sci. 12:34–40.

    Article  Google Scholar 

  • DiPaola M, Kao PN, Karlin A (1990). Mapping the alpha-subunit site photolabeled by the noncompetitive inhibitor 3H-quinacrine azide in the active state of the nicotinic acetylcholine receptor. J. Biol. Chem. 265:11017–11029.

    Google Scholar 

  • Duvoisin RM, Deneris ES, Patrick J, Heinemann S (1989). The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: beta 4. Neuron 3:487–496.

    Article  Google Scholar 

  • Dwyer TM, Adams DJ, Hille B (1980). The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75:469–492.

    Article  Google Scholar 

  • Dwyer TM, Farley JM (1984). Permeability properties of chick myotube acetylcholine-acti-vated channels. Biop. J. 45:529–539.

    Article  Google Scholar 

  • Farley JM, Narahashi T (1983). Effects of drugs on acetylcholine-activated ionic channels of internally perfused chick myoballs. J. Physiol. 337:753–768.

    Google Scholar 

  • Fieber LA, Adams DJ, (1991). Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J. Physiol. 434:215–237.

    Google Scholar 

  • Fuchs PA, Murrow BW (1992). Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J. Neurosci. 12:800–809.

    Google Scholar 

  • Gage P.W, Van Helden DF, (1979). Effects of permeant monovalent cations on end-plate channels. J. Physiol. (Lond.) 288:509–528.

    Google Scholar 

  • Giraudat J, Dennis M, Heidmann T, Chang J-Y, Changeux J-P (1986). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the delta subunit is labeled by [3H]chlorpromazine. Proc. Natl. Acad. Sci. USA 83:2719–2723.

    Article  Google Scholar 

  • Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S (1987). Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell 48:965–973.

    Article  Google Scholar 

  • Huang LM, Catterall WA, Ehrenstein G (1978). Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells. J. Gen. Physiol. 71:397–410.

    Article  Google Scholar 

  • Hucho F, Oberthur W, Lottspeich F (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits. FEBS Lett. 205:137–142

    Article  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648.

    Article  Google Scholar 

  • Imoto K, Methfessel C, Sakmann B, Mishina M, Mori Y, Konno T, Fukuda K, Kurasaki M, Bujo H, Fujita Y, Numa S (1986). Location of the δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–674.

    Article  Google Scholar 

  • Jacob MH, Berg DK (1983). The ultrastructural localization of δ-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J. Neurosci. 3:260–271.

    Google Scholar 

  • Karlin A (1991). Explorations of the nicotinic acetylcholine receptor. Harvey. Lect. Ser. 85:71–107.

    Google Scholar 

  • Katz B (1966). Nerve, Muscle and Synapse. New York: McGraw-Hill.

    Google Scholar 

  • Konno T, Busch C, Von Kitzing E, Imoto K, Wang F, Nakai J, Mishina M, Numa S, Sakmann B (1991). Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel. Proc. R. Soc. Lond. Biol. 244:69–79.

    Article  Google Scholar 

  • Leonard RJ, Labaraca CG, Charnet P, Davidson N, Lester H (1988). Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–1581.

    Article  Google Scholar 

  • Lester HA, (1992). The permeation pathway of neurotransmitter-gated ion channels. Ann. Rev. Biophys. Biomol. Struct. 21:267–292.

    Article  Google Scholar 

  • Levitt DG (1986). Interpretation of biology ion channel flux data: reaction-rate versus continuum theory. Ann. Rev. Biophys. Biophys. Chem. 15:29–57.

    Article  Google Scholar 

  • Levitt DG (1991). General continuum theory for multiion channel. II. Application to acetylcholine channel. Biophys. J. 59:278–288.

    Article  Google Scholar 

  • Lewis CA (1979). Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286:417–455.

    Google Scholar 

  • Lewis CA, Stevens CF (1979). Mechanism of ion permeation through channels in a postsynaptic membrane. In: Membrane Transport Processes. Stevens CF, Tsien RW, editors. New York: Raven Press, pp. 89–103.

    Google Scholar 

  • Lindstrom J, Schoepfer R, Whiting P (1987). Molecular studies of the neuronal nicotinic acetylcholine receptor family. Molec. Neurobiol. 1:281–337.

    Article  Google Scholar 

  • Lipton SA, Aizenman E, Loring RH (1987). Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. PflĂĽgers Arch. 410:37–43.

    Article  Google Scholar 

  • Listerud M, Brussaard AB, Devay P, Colman DR, Role LW (1991). Functional contribution of neuronal nAChR subunits revealed by antisense oligonucleotides. Science 254:1518–1521.

    Article  Google Scholar 

  • Loring RH, Zigmond RE (1988). Characterization of neuronal nicotinic receptors by snake venom neurotoxins. Trends Neurosci. 11:73–78.

    Article  Google Scholar 

  • Luetje CW, Patrick J (1991). Both alpha and beta subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J. Neruosci. 11:837–845.

    Google Scholar 

  • Luetje CW, Wada K, Rogers S, Abramson SN, Tsuji K, Heinemann S, Patrick J (1990). Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J. Neruochem. 55:632–640.

    Article  Google Scholar 

  • Marchais D, Marty A (1979). Interaction of permeant ions with channels activated by acetylcholine in Aplysia neurones. J. Physiol. 297:9–45.

    Google Scholar 

  • Mathie A, Cull-Candy SG, Colquhoun D (1987). Single-channel and whole-cell currents evoked by acetylcholine in dissociated sympathetic neurons of the rat. Proc. R. Soc. 232:239–248.

    Article  Google Scholar 

  • Mayer M, Westbrook G (1987). Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurons. J. Physiol. 394:501–527.

    Google Scholar 

  • McCormick DA, Prince DA (1987). Acetylcholine causes rapid nicotinic excitation in the medial habenular nucleus of guinea pig, in vitro. J. Neurosci. 7:742–752.

    Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986). Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411.

    Article  Google Scholar 

  • Moss BL, Schuetze SM, Role LW (1989). Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. Neuron 3:597–607.

    Article  Google Scholar 

  • Mulle C, Changeux JP (1990). A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques. J. Neurosci. 10:169–175.

    Google Scholar 

  • Mulle C, Choquet D, Korn H, Changeux JP (1992a). Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8:135–143.

    Article  Google Scholar 

  • Mulle C, Lena C, Changeux JP (1992b). Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8:937–945.

    Article  Google Scholar 

  • Neher E (1975). Ionic specificity of the gramicidin channel and the thallous ion. Biochim. Biophys. Acta 401:540–544.

    Article  Google Scholar 

  • Neher E, Steinbach JH (1978). Local anesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol. (Lond.) 277:153–176.

    Google Scholar 

  • Papke RL, Boulter J, Patrick J, Heinemann S (1989). Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron 3:598–596.

    Article  Google Scholar 

  • Papke RL, Oswald RE (1989). Mechanisms of noncompetitive inhibition of acetylcholine-induced single-channel currents. J. Gen. Physiol. 93:785–811.

    Article  Google Scholar 

  • Patrick J, SeguĂ©la P, Vernino S, Amador M, Luetje C, Dani JA (1993). Functional diversity of neuronal nicotinic acetylcholine receptors. Prog. Brain. Res. In press.

    Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980). Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457.

    Article  Google Scholar 

  • Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990). The noncompetitive blocker 3H:chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions Mil and for the structure on the ion channel. Proc. Natl. Acad. Sci. USA 87:4675–4679.

    Article  Google Scholar 

  • Sanchez JA, Dani JA, Siemen D, Hille B (1986). Slow permeation of organic cations in acetylcholine receptor channels. J. Gen. Physiol. 87:985–1001.

    Article  Google Scholar 

  • Sands SB, Barish ME (1991). Calcium permeability of neuronal nicotinic acetylcholine receptor channels in PC-12 cells. Brain Res. 560:38–42.

    Article  Google Scholar 

  • Sargent PB (1993). The diversity of neuronal nicotinic acetylcholine receptors. Ann. Rev. Neurosci. 16:403–43.

    Article  Google Scholar 

  • Schulz DW, Loring RH, Aizenman E, Zigmond RE (1991). Autoradiographic localization of putative nicotinic receptors in the rat brain using l25I-neuronal bungarotoxin. J. Neurosci. 11:287–297.

    Google Scholar 

  • Schoepfer R, Conroy W, Whiting P, Gore M, Lindstrom J (1990). Brain α-bungarotoxin binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel gen superfamily. Neuron 5:35–48.

    Article  Google Scholar 

  • Schoepfer R, Whiting P, Esch F, Blacher R, Shimasaki S, Lindstrom J (1988). DAN clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor, Neuron 1:241–248.

    Article  Google Scholar 

  • SĂ©guĂ©la P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993). Molecular cloning, functional expression and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13:596–604.

    Google Scholar 

  • Sine SM, Steinbach JH (1984). Activation of a nicotinic acetylcholine receptor. Biophys. J. 45:175–185.

    Article  Google Scholar 

  • Steinbach JH, Ifune C (1989). How many kinds of nicotinic acetylcholine receptor are there? Trends Neurosci. 12:3–6.

    Article  Google Scholar 

  • Steriade M, Biesold D, editors (1990). Brain Cholinergic Systems. Oxford: Oxford Univ. Press.

    Google Scholar 

  • Takeuchi A, Takeuchi N (1960). On the permeability of end-plate membrane during the action of transmitter. J. Physiol. 154:52–67.

    Google Scholar 

  • Tokimasa T, North RA (1984). Calcium entry through acetylcholine channels can activate potassium conductance in bullfrog sympathetic neurons. Brain Res. 295:364–367.

    Article  Google Scholar 

  • Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992). Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–135.

    Article  Google Scholar 

  • Vernino S, Dani JA (1993). Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. J. Neurosci. Submitted.

    Google Scholar 

  • Vijayaraghavan S, Pugh PC, Zhang Z, Rathouz MM, Berg DK (1992). Nicotinic receptors that bind α-bungarotoxin on neurons raise intracellular free calcium. Neuron 8:353–362.

    Article  Google Scholar 

  • Villarroel A, Sakmann B (1992). Threonine in the selectivity filter of the acetylcholine receptor channel. Biophys. J. 62:196–205.

    Article  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988). Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dani, J.A. (1993). Structure, Diversity, and Ionic Permeability of Neuronal and Muscle Acetylcholine Receptors. In: Siemen, D., Hescheler, J. (eds) Nonselective Cation Channels. EXS, vol 66. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7327-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7327-7_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7329-1

  • Online ISBN: 978-3-0348-7327-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics