Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 106))

Abstract

Specific and sensitive noninvasive biofluid-based biomarkers are always needed in the laboratory diagnosis of diseases. Biomarkers are applied not only for diagnostic purposes but for stratifying a disease and for assessing the therapy response or disease progression. MicroRNAs (miRNAs) are short noncoding RNA molecules regulating gene expression posttranscriptionally. They are frequently dysregulated in many physiological and pathophysiological conditions. miRNAs are present in the circulation and in other biofluids that are common matrices for clinical laboratory testing that has raised the possibility that miRNAs may serve as novel biomarkers. Their excellent stability also supports the possibility that miRNAs once will be routinely used biomarkers in clinical practice. From an analytical point of view, there are many factors (starting material, sample storage and processing, different RNA extraction and detection methods, intra- and interassay variability, and assay interferences) to consider if a miRNA as biomarker is aimed to be introduced as a clinical laboratory test. Despite several pre-analytical and analytical factors that still need standardization, a significant number of studies have been published about the potential role of circulating miRNAs as biomarkers. Due to the lack of standardization of methods, there are a lot of discrepancies among results. In this chapter, we aimed to summarize the current findings about circulating miRNAs focusing on the analytical points related to miRNAs measurements from biofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akane A, Matsubara K, Nakamura H et al (1994) Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. J Forensic Sci 39:362–372

    Article  CAS  PubMed  Google Scholar 

  • Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Soud WA, Jönsson LJ, Râdström P (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38:345–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz F, Roderburg C, Vargas Cardenas D et al (2013) U6 is unsuitable for normalization of serum miRNA levels in patients with sepsis or liver fibrosis. Exp Mol Med 45, e42

    Article  PubMed  PubMed Central  Google Scholar 

  • Brase JC, Wuttig D, Kuner R et al (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant RJ, Pawlowski T, Catto JW et al (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castoldi M, Schmidt S, Benes V et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Cheng G (2015) Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 81:75–93

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Zhang X, Li Z et al (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed Engl 48:3268–3272

    Article  CAS  PubMed  Google Scholar 

  • Chevillet JR, Lee I, Briggs HA et al (2014) Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules 19:6080–6105

    Article  PubMed  Google Scholar 

  • Cissell KA, Rahimi Y, Shrestha S et al (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325

    Article  CAS  PubMed  Google Scholar 

  • Cortez MA, Bueso-Ramos C, Ferdin J et al (2011) MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duygu B, de Windt LJ, da Costa Martins PA (2015) Targeting microRNAs in heart failure. Trends Cardiovasc Med. doi:10.1016/j.tcm.2015.05.008 [Epub ahead of print]

    PubMed  Google Scholar 

  • Farazi TA, Hoell JI, Morozov P et al (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farina NH, Wood ME, Perrapato SD et al (2014) Standardizing analysis of circulating microRNA: clinical and biological relevance. J Cell Biochem 115:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadelha MR, Kasuki L, Dénes J et al (2013) MicroRNAs: suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest 36:889–895

    Article  CAS  PubMed  Google Scholar 

  • Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasedieck S, Sorrentino A, Langer C et al (2013) Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood 121:4977–4984

    Article  CAS  PubMed  Google Scholar 

  • Heegaard NH, Schetter AJ, Welsh JA et al (2012) Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer 130:1378–1386

    Article  CAS  PubMed  Google Scholar 

  • Hindson CM, Chevillet JR, Briggs HA et al (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CY, Chen X, Liu T et al (2013) Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers. Biosens Bioelectron 50:132–136

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sohel MM, Schellander K et al (2012) Characterization and importance of microRNAs in mammalian gonadal functions. Cell Tissue Res 349:679–690

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang Z, Liao BY et al (2014) Human miR-1228 as a stable endogenous control for the quantification of circulating microRNAs in cancer patients. Int J Cancer 135:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Yuan T, Tschannen M et al (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Li Z, Liu C et al (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification. Angew Chem Int Ed Engl 49:5498–5501

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Song Q, Yang S et al (2015) Serum microRNA-218 is a potential biomarker for esophageal cancer. Cancer Biomark. doi:10.3233/CBM-150480 [Epub ahead of print]

    Google Scholar 

  • Kim DJ, Linnstaedt S, Palma J et al (2012a) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn 14:71–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Yeo J, Kim B et al (2012b) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46:893–895

    Article  CAS  PubMed  Google Scholar 

  • Köberle V, Pleli T, Schmithals C et al (2013) Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS ONE 8, e75184

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriebel S, Schmidt D, Holdenrieder S et al (2015) Analysis of tissue and serum microRNA expression in patients with upper urinary tract urothelial cancer. PLoS ONE 10, e0117284

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  • Leone V, D’Angelo D, Ferraro A et al (2011) A TSH-CREB1-microRNA loop is required for thyroid cell growth. Mol Endocrinol 10:1819–1830

    Article  Google Scholar 

  • Li X (2014) MiR-375, a microRNA related to diabetes. Gene 533:1–4

    Article  CAS  PubMed  Google Scholar 

  • Li A, Yu J, Kim H et al (2013) MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res 19:3600–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisse TS, Adams JS, Hewison M (2013) Vitamin D and microRNAs in bone. Crit Rev Eukaryot Gene Expr 23:195–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JS, Milosevic D, Reddi HV et al (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57:833–840

    Article  CAS  PubMed  Google Scholar 

  • Mestdagh P, Hartmann N, Baeriswyl L et al (2014) Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods 11:809–815

    Article  CAS  PubMed  Google Scholar 

  • Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett 32:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Mishra PJ, Bertino JR (2009) MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra PJ, Merlino G (2009) MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 119:2119–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra PJ, Humeniuk R, Mishra PJ et al (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104:13513–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra PJ, Song B, Mishra PJ et al (2009) MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS ONE 4, e8445

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  • Page K, Guttery DS, Zahra N et al (2013) Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS ONE 8, e77963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallante P, Battista S, Pierantoni GM et al (2014) Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol 10:88–101

    Article  CAS  PubMed  Google Scholar 

  • Place RF, Li LC, Pookot D et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard CC, Cheng HH, Tewari M (2012a) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard CC, Kroh E, Wood B et al (2012b) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res 5:492–497

    Article  CAS  Google Scholar 

  • Redova M, Poprach A, Nekvindova J et al (2012) Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders I, Holdenrieder S, Walgenbach-Brünagel G et al (2012) Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 19:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Schopman NC, Heynen S, Haasnoot J et al (2010) A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. RNA Biol 7:573–576

    Article  CAS  PubMed  Google Scholar 

  • Shende VR, Goldrick MM, Ramani S et al (2011) Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS ONE 6, e22586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva J, García V, Zaballos Á et al (2010) Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J 37:617–623

    Article  PubMed  Google Scholar 

  • Singh P, Soon PS, Feige JJ et al (2011) Dysregulation of microRNAs in adrenocortical tumors. Mol Cell Endocrinol 351:118–128

    Article  PubMed  Google Scholar 

  • Sivapragasam M, Rotondo F, Lloyd RV et al (2011) MicroRNAs in the human pituitary. Endocr Pathol 22:134–143

    Article  CAS  PubMed  Google Scholar 

  • Song J, Bai Z, Han W et al (2011) Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 57:897–904

    Article  PubMed  Google Scholar 

  • Szabó PM, Butz H, Igaz P et al (2013) Minireview: miRomics in endocrinology: a novel approach for modeling endocrine diseases. Mol Endocrinol 274:573–585

    Article  Google Scholar 

  • Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465

    Article  CAS  PubMed  Google Scholar 

  • Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci USA 100:4504–4509

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlassov AV, Magdaleno S, Setterquist R et al (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948

    Article  CAS  PubMed  Google Scholar 

  • von Brandenstein M, Pandarakalam JJ, Kroon L et al (2012) MicroRNA 15a, inversely correlated to PKCα, is a potential marker to differentiate between benign and malignant renal tumors in biopsy and urine samples. Am J Pathol 180:1787–1797

    Article  Google Scholar 

  • Wang B, Howel P, Bruheim S et al (2011) Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS ONE 6, e17167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Yuan Y, Cho JH et al (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS ONE 7, e41561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witwer KW (2015) Circulating microRNA biomarker studies: pitfalls and potential solutions. Clin Chem 61:56–63

    Article  CAS  PubMed  Google Scholar 

  • Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2.doi:10.3402/jev.v2i0.20360

  • Yamada A, Cox MA, Gaffney KA et al (2014) Technical factors involved in the measurement of circulating microRNA biomarkers for the detection of colorectal neoplasia. PLoS ONE 9, e112481

    Article  PubMed  PubMed Central  Google Scholar 

  • Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348

    Article  PubMed  Google Scholar 

  • Zhang J, Guo H, Qian G (2010) MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network. Mol Cancer 9:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhao H, Gao Y et al (2012) Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta 1826:32–43

    CAS  PubMed  Google Scholar 

  • Zheng G, Wang H, Zhang X et al (2013) Identification and validation of reference genes for qPCR detection of serum microRNAs in colorectal adenocarcinoma patients. PLoS ONE 8, e83025

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Patócs M.D., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butz, H., Patócs, A. (2015). Technical Aspects Related to the Analysis of Circulating microRNAs. In: Igaz, P. (eds) Circulating microRNAs in Disease Diagnostics and their Potential Biological Relevance. Experientia Supplementum, vol 106. Springer, Basel. https://doi.org/10.1007/978-3-0348-0955-9_3

Download citation

Publish with us

Policies and ethics