Skip to main content

Use of rHuG-CSF for the Treatment of Myeloid Leukemia and in Targeting Leukemia Stem Cells

  • Chapter
  • First Online:
Twenty Years of G-CSF

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 960 Accesses

Abstract

The utility of recombinant human granulocyte colony-stimulating factor (rHuG-CSF) in leukemia treatment has been well established, in supporting granulopoiesis after chemotherapy and in mobilizing hematopoietic stem/progenitor cells (HSPC) for both allogeneic and autologous transplantation. Successes in these two objectives have led to significantly improved care of patients with leukemia. This chapter discusses another potential application of this agent as a part of targeted therapy against leukemia stem cells (LSC). Within the functional hierarchy of leukemia cells, LSC are the cells capable of initiating disease. Reports have shown that LSC are cell-cycle quiescent and chemotherapy resistant, suggesting their crucial role in acute myeloid leukemia (AML) relapse. The use of rHuG-CSF may induce quiescent AML stem cells to cycle, thereby rendering them susceptible to chemotherapy. Such application of rHuG-CSF may become an important part of curative therapeutic strategies for AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodey GP, Buckley M, Sathe YS, Freireich EJ (1966) Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 64:328–340

    PubMed  CAS  Google Scholar 

  2. Bodey GP, Rodriguez V, Chang HY, Narboni G (1978) Fever and infection in leukemic patients: a study of 494 consecutive patients. Cancer 41:1610–1622

    Article  PubMed  CAS  Google Scholar 

  3. Nagata S, Tsuchiya M, Asano S et al (1986) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319:415–418

    Article  PubMed  CAS  Google Scholar 

  4. Souza LM, Boone TC, Gabrilove J et al (1986) Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232:61–65

    Article  PubMed  CAS  Google Scholar 

  5. Welte K, Bonilla MA, Gillio AP et al (1987) Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 165:941–948

    Article  PubMed  CAS  Google Scholar 

  6. Rowe JM (1998) Treatment of acute myeloid leukemia with cytokines: effect on duration of neutropenia and response to infections. Clin Infect Dis 26:1290–1294

    Article  PubMed  CAS  Google Scholar 

  7. Godwin JE, Kopeky KJ, Head DR et al (1998) A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest oncology group study. Blood 91:3607–3615

    PubMed  CAS  Google Scholar 

  8. Harousseau JL, Witz B, Lioure B et al (2000) Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-Est Leucemies Aigues Myeloblastiques. J Clin Oncol 18:780–787

    PubMed  CAS  Google Scholar 

  9. Heil G, Hoelzer D, Sanz MA et al (1997) A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. Blood 90:4710–4718

    PubMed  CAS  Google Scholar 

  10. Ottmann OG, Bug G, Krauter J (2007) Current status of growth factors in the treatment of acute myeloid and lymphoblastic leukemia. Semin Hematol 44:183–192

    Article  PubMed  CAS  Google Scholar 

  11. Usuki K, Urabe A, Masaoka T et al (2002) Efficacy of granulocyte colony-stimulating factor in the treatment of acute myelogenous leukaemia: a multicentre randomized study. Br J Haematol 116:103–112

    Article  PubMed  CAS  Google Scholar 

  12. Smith TJ, Khatcheressian J, Lyman GH et al (2006) 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 24:3187–3205

    Article  PubMed  CAS  Google Scholar 

  13. Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  14. Kollet O, Dar A, Shivtiel S et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664

    Article  PubMed  CAS  Google Scholar 

  15. Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  PubMed  CAS  Google Scholar 

  16. Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  17. Fleming HE, Janzen V, Lo Celso C et al (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    Article  PubMed  CAS  Google Scholar 

  18. Lemoli RM et al (1995) Proliferative response of human marrow myeloid progenitor cells to in vivo treatment with granulocyte colony-stimulating factor alone and in combination with interleukin-3 after autologous bone marrow transplantation. Exp Hematol 23:1520–1526

    PubMed  CAS  Google Scholar 

  19. Lemoli RM, Fortuna A, Fogli M et al (1997) Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor. Blood 89:1189–1196

    PubMed  CAS  Google Scholar 

  20. Morrison SJ, Wright DE, Weissman IL (1997) Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci U S A 94:1908–1913

    Article  PubMed  CAS  Google Scholar 

  21. Rosti V, Malabarba L, Ramajoli I et al (2000) Cord blood-derived hematopoietic progenitor cells: in vitro response to hematopoietic growth factors and their recruitment into the S-phase of the cell cycle. Haematologica 85:18–25

    PubMed  CAS  Google Scholar 

  22. van Os R, Robinson S, Sheridan T, Mauch PM (2000) Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal. Stem Cells 18:120–127

    Article  PubMed  Google Scholar 

  23. Yang FC, Watanabe S, Tsuji K et al (1998) Human granulocyte colony-stimulating factor (G-CSF) stimulates the in vitro and in vivo development but not commitment of primitive multipotential progenitors from transgenic mice expressing the human G-CSF receptor. Blood 92:4632–4640

    PubMed  CAS  Google Scholar 

  24. Byrd JC, Mrozek K, Dodge RK et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336

    Article  PubMed  CAS  Google Scholar 

  25. Grimwade D, Walker H, Harrison G et al (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98:1312–1320

    Article  PubMed  CAS  Google Scholar 

  26. Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood 92:2322–2333

    PubMed  CAS  Google Scholar 

  27. Slovak ML, Kopecky KJ, Cassileth PA et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    PubMed  CAS  Google Scholar 

  28. Hokland P, Ommen HB (2011) Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood 117:2577–2584

    Article  PubMed  CAS  Google Scholar 

  29. Beekman R, Touw IP (2010) G-CSF and its receptor in myeloid malignancy. Blood 115:5131–5136

    Article  PubMed  CAS  Google Scholar 

  30. Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD (1987) The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69:1771–1776

    PubMed  CAS  Google Scholar 

  31. Delwel R, Salem M, Pellens C et al (1988) Growth regulation of human acute myeloid leukemia: effects of five recombinant hematopoietic factors in a serum-free culture system. Blood 72:1944–1949

    PubMed  CAS  Google Scholar 

  32. Bhalla K, Birkhofer M, Arlin Z, Grant S, Lutzky J, Graham G (1988) Effect of recombinant GM-CSF on the metabolism of cytosine arabinoside in normal and leukemic human bone marrow cells. Leukemia 2:810–813

    PubMed  CAS  Google Scholar 

  33. Bhalla K, Holladay C, Arlin Z, Grant S, Ibrado AM, Jasiok M (1991) Treatment with interleukin-3 plus granulocyte-macrophage colony-stimulating factors improves the selectivity of Ara-C in vitro against acute myeloid leukemia blasts. Blood 78:2674–2679

    PubMed  CAS  Google Scholar 

  34. Cannistra SA, Groshek P, Griffin JD (1989) Granulocyte-macrophage colony-stimulating factor enhances the cytotoxic effects of cytosine arabinoside in acute myeloblastic leukemia and in the myeloid blast crisis phase of chronic myeloid leukemia. Leukemia 3:328–334

    PubMed  CAS  Google Scholar 

  35. Inatomi Y, Toyama K, Clark SC, Shimizu K, Miyauchi J (1994) Combinations of stem cell factor with other hematopoietic growth factors enhance growth and sensitivity to cytosine arabinoside of blast progenitors in acute myelogenous leukemia. Cancer 54:455–462

    CAS  Google Scholar 

  36. Lista P, Porcu P, Avanzi GC, Pegoraro L (1988) Interleukin 3 enhances the cytotoxic activity of 1-beta-D-arabinofuranosylcytosine (ara-C) on acute myeloblastic leukaemia (AML) cells. Br J Haematol 70:121–123

    Article  PubMed  CAS  Google Scholar 

  37. Miyauchi J, Kelleher CA, Wang C, Minkin S, McCulloch EA (1989) Growth factors influence the sensitivity of leukemic stem cells to cytosine arabinoside in culture. Blood 73:1272–1278

    PubMed  CAS  Google Scholar 

  38. Reuter C, Auf der Landwehr U, Schleyer E et al (1994) Modulation of intracellular metabolism of cytosine arabinoside in acute myeloid leukemia by granulocyte-macrophage colony-stimulating factor. Leukemia 8:217–225

    PubMed  CAS  Google Scholar 

  39. Tanaka M (1993) Recombinant GM-CSF modulates the metabolism of cytosine arabinoside in leukemic cells in bone marrow. Leuk Res 17:585–592

    Article  PubMed  CAS  Google Scholar 

  40. te Boekhorst PA, Lowenberg B, Vlastuin M, Sonneveld P (1993) Enhanced chemosensitivity of clonogenic blasts from patients with acute myeloid leukemia by G-CSF, IL-3 or GM-CSF stimulation. Leukemia 7:1191–1198

    Google Scholar 

  41. te Boekhorst PA, Lowenberg B, Sonneveld P (1994) Hematopoietic growth factor stimulation and cytarabine cytotoxicity in vitro: effects in untreated and relapsed or primary refractory acute myeloid leukemia cells. Leukemia 8:1480–1486

    Google Scholar 

  42. Frenette PS, Desforges JF, Schenkein DP, Rabson A, Slapack CA, Miller KB (1995) Granulocyte-macrophage colony stimulating factor (GM-CSF) priming in the treatment of elderly patients with acute myelogenous leukemia. Am J Hematol 49:48–55

    Article  PubMed  CAS  Google Scholar 

  43. Rowe JM, Neuberg D, Friedenberg W et al (2004) A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: a trial by the Eastern Cooperative Oncology Group. Blood 103:479–485

    Article  PubMed  CAS  Google Scholar 

  44. Thomas X, Raffoux E, Botton S et al (2007) Effect of priming with granulocyte-macrophage colony-stimulating factor in younger adults with newly diagnosed acute myeloid leukemia: a trial by the Acute Leukemia French Association (ALFA) Group. Leukemia 21:453–461

    Article  PubMed  CAS  Google Scholar 

  45. Amadori S, Suciu S, Jehn U et al (2005) Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study. Blood 106:27–34

    Article  PubMed  CAS  Google Scholar 

  46. Buchner T, Berdel WE, Hiddemann W (2004) Priming with granulocyte colony-stimulating factor – relation to high-dose cytarabine in acute myeloid leukemia. N Engl J Med 350:2215–2216

    Article  PubMed  Google Scholar 

  47. Estey EH, Thall PF, Pierce S et al (1999) Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin +/− all-trans retinoic acid +/− granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 93:2478–2484

    PubMed  CAS  Google Scholar 

  48. Lowenberg B, Van Putten W, Theobald M et al (2003) Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 349:743–752

    Article  PubMed  Google Scholar 

  49. Milligan DW, Wheatley K, Littlewood T, Craig JI, Burnett AK (2006) Fludarabine and cytosine are less effective than standard ADE chemotherapy in high-risk acute myeloid leukemia, and addition of G-CSF and ATRA are not beneficial: results of the MRC AML-HR randomized trial. Blood 107:4614–4622

    Article  PubMed  CAS  Google Scholar 

  50. Ohno R, Naoe T, Kanamaru A et al (1994) A double-blind controlled study of granulocyte colony-stimulating factor started two days before induction chemotherapy in refractory acute myeloid leukemia. Kohseisho Leukemia Study Group. Blood 83:2086–2092

    PubMed  CAS  Google Scholar 

  51. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  PubMed  CAS  Google Scholar 

  52. McCune JM, Namikawa J, Kaneshima H, Shultz LD, Lieberman M, Weissman IL (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639

    Article  PubMed  CAS  Google Scholar 

  53. Mosier DE, Gulizia RJ, Baird SM, Wilson DB (1988) Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335:256–259

    Article  PubMed  CAS  Google Scholar 

  54. Shultz LD, Schweiter PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    PubMed  CAS  Google Scholar 

  55. Lapidot T, Sirad C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  56. Ishikawa F, Yohsida S, Saito Y et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25:1315–1321

    Article  PubMed  CAS  Google Scholar 

  57. Ninomiya M, Abe A, Katsumi A et al (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 21:136–142

    Article  PubMed  CAS  Google Scholar 

  58. Ishikawa F, Yasukawa M, Lyons B et al (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106:1565–1573

    Article  PubMed  CAS  Google Scholar 

  59. Saito Y, Uchida N, Tanaka S et al (2010) Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28:275–280

    PubMed  CAS  Google Scholar 

  60. Mori T, Aisa Y, Watanabe R et al (2008) Long-term follow-up of allogeneic hematopoietic stem cell transplantation for de novo acute myelogenous leukemia with a conditioning regimen of total body irradiation and granulocyte colony-stimulating factor-combined high-dose cytarabine. Biol Blood Marrow Transplant 14:651–657

    Article  PubMed  CAS  Google Scholar 

  61. Takahashi S, Iseki T, Ooi J et al (2004) Single-institute comparative analysis of unrelated bone marrow transplantation and cord blood transplantation for adult patients with hematologic malignancies. Blood 104:3813–3820

    Article  PubMed  CAS  Google Scholar 

  62. Essers MA, Offner S, Blanco-Bose WE et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908

    Article  PubMed  CAS  Google Scholar 

  63. Zeng Z, Shi YX, Samudio U et al (2009) Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 113:6215–6224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Y. Saito for critical review and comments on this manuscript; S. Takagi and Y. Najima for preparation of Table 1; and N. Suzuki, A. Sone, and M. Tomizawa for technical assistance with primary data presented in this manuscript. Figures 1 and 2 are reproduced from [59] (Saito et al. Nat Biotechnol 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Ishikawa, F. (2012). Use of rHuG-CSF for the Treatment of Myeloid Leukemia and in Targeting Leukemia Stem Cells. In: Molineux, G., Foote, M., Arvedson, T. (eds) Twenty Years of G-CSF. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0218-5_9

Download citation

Publish with us

Policies and ethics