Skip to main content

Image and Audio Data Classification Using Bagging Ensembles of Spiking Neural Networks with Memristive Plasticity

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2023 (BICA 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1130))

Included in the following conference series:

  • 178 Accesses

Abstract

Spiking neural networks (SNNs) are potentially capable of greatly reducing the energy requirements of modern intelligent systems when combined with neuromorphic computing devices based on memristors, that facilitate on-chip SNN training. Currently, the existing spiking approaches either rely on weight transfer and/or backpropagation-based training or utilize large fully-connected spiking networks, imposing high hardware requirements. In this paper, we study the application of the bagging ensembling technique coupled with SNN-based models to the audio and image classification problems. In our experiments, we use a three-layer spiking neural network with Logistic Regression decoding and consider three local plasticity rules—spike time-dependent plasticity and its nanocomposite and poly-p-xylylene memristor counterparts. Using the Digits and FSDD datasets for training and evaluation, we show that bagging yields a performance increase of up to 20% in terms of the F1-score metric, while substantially reducing the total number of connections in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://motivnt.ru/neurochip-altai.

References

  1. Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  2. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

    Article  Google Scholar 

  3. Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., Eleftheriou, E.: Low-power neuromorphic hardware for signal processing applications: a review of architectural and system-level design approaches. IEEE Signal Process. Mag. 36(6), 97–110 (2019). https://doi.org/10.1109/MSP.2019.2933719

    Article  Google Scholar 

  4. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10 (2016)

    Google Scholar 

  5. Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S.J., Masquelier, T.: Combining STDP and reward-modulated STDP in deep convolutional spiking neural networks for digit recognition. arXiv preprint arXiv:1804.00227 (2018)

  6. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  7. Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with temporal encoding and learning. Neurocomputing 138, 3–13 (2014). https://doi.org/10.1016/j.neucom.2013.06.052

    Article  Google Scholar 

  8. Wang, X., Hou, Z.G., Lv, F., Tan, M., Wang, Y.: Mobile robots’ modular navigation controller using spiking neural networks. Neurocomputing 134, 230–238 (2014)

    Google Scholar 

  9. Li, C., Wang, Z., Rao, M., Belkin, D., Song, W., Jiang, H., Yan, P., Li, Y., Lin, P., Hu, M., et al.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1(1), 49–57 (2019). https://doi.org/10.1038/s42256-018-0001-4

    Article  Google Scholar 

  10. Saïghi, S., Mayr, C.G., Serrano-Gotarredona, T., Schmidt, H., Lecerf, G., Tomas, J., Grollier, J., Boyn, S., Vincent, A.F., Querlioz, D., La Barbera, S., Alibart, F., Vuillaume, D., Bichler, O., Gamrat, C., Linares-Barranco, B.: Plasticity in memristive devices for spiking neural networks. Front. Neurosci. 9, 51 (2015). https://doi.org/10.3389/fnins.2015.00051

    Article  Google Scholar 

  11. Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., Linares-Barranco, B.: STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 7, 2 (2013)

    Article  Google Scholar 

  12. Zhang, Y., Wang, X., Friedman, E.G.: Memristor-based circuit design for multilayer neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 677–686 (2018). https://doi.org/10.1109/TCSI.2017.2729787

    Article  Google Scholar 

  13. Tao, T., Ma, H., Li, D., Li, Y., Tan, S., Liu, E.X., Schutt-Aine, J., Li, E.P.: Modeling and analysis of spike signal sequence for memristor crossbar array in neuromorphic chips. IEEE Trans. Circuits Syst. I Regul. Pap. 70(6), 2271–2282 (2023). https://doi.org/10.1109/TCSI.2023.3250699

    Article  Google Scholar 

  14. Bordanov, I., Antonov, A., Korolev, L.: Simulation of calculation errors in memristive crossbars for artificial neural networks. In: 2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1008–1012 (2023). https://doi.org/10.1109/ICIEAM57311.2023.10139308

  15. Demin, V., Nekhaev, D., Surazhevsky, I., Nikiruy, K., Emelyanov, A., Nikolaev, S., Rylkov, V., Kovalchuk, M.: Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network. Neural Netw. 134, 64–75 (2021)

    Google Scholar 

  16. Minnekhanov, A.A., Shvetsov, B.S., Martyshov, M.M., Nikiruy, K.E., Kukueva, E.V., Presnyakov, M.Y., Forsh, P.A., Rylkov, V.V., Erokhin, V.V., Demin, V.A., et al.: On the resistive switching mechanism of parylene-based memristive devices. Org. Electron. 74, 89–95 (2019). https://doi.org/10.1016/j.orgel.2019.06.052

    Article  Google Scholar 

  17. Sboev, A., Vlasov, D., Rybka, R., Davydov, Y., Serenko, A., Demin, V.: Modeling the dynamics of spiking networks with memristor-based STDP to solve classification tasks. Mathematics 9(24), 3237 (2021)

    Article  Google Scholar 

  18. Sboev, A., Davydov, Y., Rybka, R., Vlasov, D., Serenko, A.: A comparison of two variants of memristive plasticity for solving the classification problem of handwritten digits recognition. In: Klimov, V.V., Kelley, D.J. (eds.) Biologically Inspired Cognitive Architectures 2021, pp. 438–446. Springer, Cham (2022)

    Chapter  Google Scholar 

  19. Vlasov, D., Davydov, Y., Serenko, A., Rybka, R., Sboev, A.: Spoken digits classification based on spiking neural networks with memristor-based stdp. In: 2022 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 330–336. IEEE (2022)

    Google Scholar 

  20. Matsukatova, A.N., Iliasov, A.I., Nikiruy, K.E., Kukueva, E.V., Vasiliev, A.L., Goncharov, B.V., Sitnikov, A.V., Zanaveskin, M.L., Bugaev, A.S., Demin, V.A., et al.: Convolutional neural network based on crossbar arrays of (co-fe-b) x (linbo3) 100–x nanocomposite memristors. Nanomaterials 12(19), 3455 (2022)

    Article  Google Scholar 

  21. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  Google Scholar 

  22. Diehl, P.U., Pedroni, B.U., Cassidy, A., Merolla, P., Neftci, E., Zarrella, G.: Truehappiness: Neuromorphic emotion recognition on truenorth (2016). https://doi.org/10.1109/IJCNN.2016.7727758

  23. Gewaltig, M.O., Diesmann, M.: NEST (Neural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  25. Jackson, Z., Souza, C., Flaks, J., Pan, Y., Nicolas, H., Thite, A.: Jakobovski/free-spoken-digit-dataset: v1.0.8 (2018). https://doi.org/10.5281/zenodo.1342401

Download references

Acknowledgements

The study has been supported by the Russian Science Foundation grant No. 21-11-00328 https://rscf.ru/project/21-11-00328/ and has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Rybka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rybka, R., Davydov, Y., Sboev, A., Vlasov, D., Serenko, A. (2024). Image and Audio Data Classification Using Bagging Ensembles of Spiking Neural Networks with Memristive Plasticity. In: Samsonovich, A.V., Liu, T. (eds) Biologically Inspired Cognitive Architectures 2023. BICA 2023. Studies in Computational Intelligence, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-031-50381-8_80

Download citation

Publish with us

Policies and ethics