Skip to main content

Validity and Limitations of Supervised Learning for Phase Transition Research

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2023)

Abstract

We analyze the Ising model and the Baxter-Wu model in two dimensions using deep learning networks trained to classify paramagnetic (PM) and ferromagnetic (FM) phases. We use the usual Metropolis Monte Carlo algorithm to create uncorrelated snapshots of spin states. The images used as training data are labeled as belonging to the PM state or the FM state using analytically known phase transition temperatures depending on a given set of parameters. The main result of the paper is that the widely used technique for extraction of the critical temperature directly from the dependence of the output function is not universal. The value of the output function at the critical temperature really depends on the anisotropy of the model under study, the architecture of the deep network, and some parameters of the deep network application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13(5), 431–434 (2017)

    Article  Google Scholar 

  2. Bachtis, D., Aarts, G., Lucini, B.: Mapping distinct phase transitions to a neural network. Phys. Rev. E 102(5), 053306 (2020)

    Article  MathSciNet  Google Scholar 

  3. Van Nieuwenburg, E.P., Liu, Y.H., Huber, S.D.: Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017)

    Article  Google Scholar 

  4. Morningstar, A., Melko, R.G.: Deep learning the Ising model near criticality. J. Mach. Learn. Res. 18(163), 1–17 (2018)

    MathSciNet  Google Scholar 

  5. Westerhout, T., et al.: Generalization properties of neural network approximations to frustrated magnet ground states. Nat. Commun. 11, 1593 (2020)

    Article  Google Scholar 

  6. Walker, N., Tam, K.M.: InfoCGAN classification of 2-dimensional square Ising configurations (2020). arXiv preprint arXiv:2005.01682

  7. Miyajima, Y., Mochizuki, M.: Machine-learning detection of the Berezinskii-Kosterlitz-Thouless transition and the second-order phase transition in the XXZ models. Phys. Rev. B 107, 134420 (2023)

    Article  Google Scholar 

  8. Chertenkov, V., Burovski, E., Shchur, L.: Deep machine learning investigation of phase transitions. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) RuSCDays 2022. LNCS, vol. 13708, pp. 397–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22941-1_29

  9. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(3–4), 117–149 (1941)

    Google Scholar 

  10. Houtappel, R.M.F.: Order-disorder in hexagonal lattices. Physica 16(5), 425–455 (1950)

    Article  MathSciNet  Google Scholar 

  11. Baxter, R.J., Wu, F.Y.: Exact solution of an Ising model with three-spin interactions on a triangular lattice. Phys. Rev. Lett. 31, 1294 (1973)

    Article  Google Scholar 

  12. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley, Reading (1992)

    Google Scholar 

  13. Privman, V., Hohenberg, P.C., Aharony, A.: In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 14. Academic Press, New York (1991)

    Google Scholar 

  14. Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge Philos. Soc. 48, 16 (1952)

    Article  MathSciNet  Google Scholar 

  15. Joyce, G.S.: Analytic properties of the Ising model with triplet interactions on the triangular lattice. Proc. R. Soc. London A 343, 45 (1975)

    Article  Google Scholar 

  16. Cardy, J.L., Nauenberg, M., Scalapino, D.J.: Scaling theory of the Potts-model multicritical point. Phys. Rev. B 22, 2560 (1980)

    Article  MathSciNet  Google Scholar 

  17. Shchur, L.N., Janke, W.: Critical amplitude ratios of the Baxter-Wu model. Nucl. Phys. B 840[FS], 491 (2010)

    Google Scholar 

  18. Metropolis, N., et al.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  19. Sokal, A.: Monte Carlo methods in statistical mechanics: foundations and new algorithms. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds.) Functional Integration NATO ASI Series, vol. 361, p. 131. Springer, Boston (1997). https://doi.org/10.1007/978-1-4899-0319-8_6

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Le Cun, Y., Bottou, L., Bengio, Y.: Reading checks with multilayer graph transformer networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, p. 151 (1997)

    Google Scholar 

  22. Kingma D., Ba J.: Adam: A Method for Stochastic Optimization, arXiv:1412.6980

  23. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018) arXiv preprint arXiv:1810.04805

  24. Fisher, M.E., Ferdinand, A.E.: Interfacial, boundary and size effects at critical points. Phys. Rev. Lett. 19, 169 (1967)

    Article  Google Scholar 

  25. Ferdinand, A.E., Fisher, M.E.: Bounded and inhomogeneous Ising models. I. specific-heat anomaly of a finite lattice. Phys. Rev. B 185, 832 (1969)

    Google Scholar 

  26. Wu, T.T., et al.: Spin-spin correlation functions for the two-dimensional Ising model. Exact theory in the scaling region. Phys. Rev. B 13, 316 (1976)

    Google Scholar 

  27. Selke, W., Shchur, L.N.: Critical Binder cumulant in a two-dimensional anisotropic Ising model with competing interactions. Phys. Rev. E 80(4), 042104 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Research supported by the grant 22-11-00259 of the Russian Science Foundation.

The simulations were done using the computational resources of HPC facilities at HSE University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Shchur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sukhoverkhova, D., Chertenkov, V., Burovski, E., Shchur, L. (2023). Validity and Limitations of Supervised Learning for Phase Transition Research. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds) Supercomputing. RuSCDays 2023. Lecture Notes in Computer Science, vol 14389. Springer, Cham. https://doi.org/10.1007/978-3-031-49435-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49435-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49434-5

  • Online ISBN: 978-3-031-49435-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics