Skip to main content

Automated Mapping of Residual Distortion Severity in Diffusion MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14328))

Included in the following conference series:

  • 125 Accesses

Abstract

Susceptibility-induced distortion is a common artifact in diffusion MRI (dMRI), which deforms the dMRI locally and poses significant challenges in connectivity analysis. While various methods were proposed to correct the distortion, residual distortions often persist at varying degrees across brain regions and subjects. Generating a voxel-level residual distortion severity map can thus be a valuable tool to better inform downstream connectivity analysis. To fill this current gap in dMRI analysis, we propose a supervised deep-learning network to predict a severity map of residual distortion. The training process is supervised using the structural similarity index measure (SSIM) of the fiber orientation distribution (FOD) in two opposite phase encoding (PE) directions. Only b0 images and related outputs from the distortion correction methods are needed as inputs in the testing process. The proposed method is applicable in large-scale datasets such as the UK Biobank, Adolescent Brain Cognitive Development (ABCD), and other emerging studies that only have complete dMRI data in one PE direction but acquires b0 images in both PEs. In our experiments, we trained the proposed model using the Lifespan Human Connectome Project Aging (HCP-Aging) dataset (\(n=662\)) and apply the trained model to data (\(n=1330\)) from UK Biobank. Our results show low training, validation, and test errors, and the severity map correlates excellently with an FOD integrity measure in both HCP-Aging and UK Biobank data. The proposed method is also highly efficient and can generate the severity map in around 1 s for each subject.

Y. Shi—This work is supported by the National Institute of Health (NIH) under grants R01EB022744, RF1AG077578, RF1AG056573, RF1AG064584, R21AG064776, U19AG078109, and P41EB015922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Donnell, L.J., Westin, C.F.: An introduction to diffusion tensor image analysis. Neurosurg. Clin. 22(2), 185–196 (2011)

    Article  Google Scholar 

  2. Li, J., Shi, Y., Toga, A.W.: Mapping brain anatomical connectivity using diffusion magnetic resonance imaging: structural connectivity of the human brain. IEEE Signal Process. Mag. 33(3), 36–51 (2016)

    Article  Google Scholar 

  3. Qiao, Y., Shi, Y.: Unsupervised deep learning for fod-based susceptibility distortion correction in diffusion MRI. IEEE Trans. Med. Imaging 41(5), 1165–1175 (2021)

    Article  Google Scholar 

  4. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  5. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Article  Google Scholar 

  6. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  7. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  8. Van Essen, D.C., et al.: The WU-MINN human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  9. Bookheimer, S.Y., et al.: The lifespan human connectome project in aging: an overview. Neuroimage 185, 335–348 (2019)

    Article  Google Scholar 

  10. HCP-Aging Homepage. https://www.humanconnectome.org/study/hcp-lifespan-aging. Accessed 8 Mar 2023

  11. HCLV Homepage. https://www.humanconnectome.org/study/crhd-human-connectomes-low-vision-blindness-and-sight-restoration. Accessed 4 Aug 2023

  12. Qiao, Y., Sun, W., Shi, Y.: FOD-based registration for susceptibility distortion correction in brainstem connectome imaging. Neuroimage 202, 116164 (2019)

    Article  Google Scholar 

  13. Hsu, Y.C., Tseng, W.Y.I.: DACO: Distortion/artefact correction for diffusion MRI data. Neuroimage 262, 119571 (2022)

    Article  Google Scholar 

  14. Schilling, K.G., et al.: Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE 15(7), e0236418 (2020)

    Article  Google Scholar 

  15. Duong, S.T., Phung, S.L., Bouzerdoum, A., Schira, M.M.: An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding epi images. Magn. Reson. Imaging 71, 1–10 (2020)

    Article  Google Scholar 

  16. Bycroft, C., et al.: The UK biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)

    Article  Google Scholar 

  17. UK Biobank Homepage. https://www.ukbiobank.ac.uk. Accessed 8 Mar 2023

  18. Sudlow, C., et al.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  19. Bjork, J.M., Straub, L.K., Provost, R.G., Neale, M.C.: The ABCD study of neurodevelopment: identifying neurocircuit targets for prevention and treatment of adolescent substance abuse. Curr. Treatment Opt. Psychiat. 4, 196–209 (2017)

    Article  Google Scholar 

  20. Andersson, J.L., Sotiropoulos, S.N.: Non-parametric representation and prediction of single-and multi-shell diffusion-weighted MRI data using gaussian processes. Neuroimage 122, 166–176 (2015)

    Article  Google Scholar 

  21. Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  22. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Tran, G., Shi, Y.: Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans. Med. Imaging 34(11), 2320–2332 (2015)

    Article  Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  27. Fushiki, T.: Estimation of prediction error by using k-fold cross-validation. Stat. Comput. 21, 137–146 (2011)

    Article  MathSciNet  Google Scholar 

  28. DeCost, B.L., Holm, E.A.: A computer vision approach for automated analysis and classification of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015)

    Article  Google Scholar 

  29. Jacobacci, F., et al.: Improving spatial normalization of brain diffusion MRI to measure longitudinal changes of tissue microstructure in the cortex and white matter. J. Magn. Reson. Imaging 52(3), 766–775 (2020)

    Article  Google Scholar 

  30. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  31. ADNI Homepage. https://adni.loni.usc.edu/. Accessed 2 Aug 2023

  32. Somerville, L.H., et al.: The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 183, 456–468 (2018)

    Article  Google Scholar 

  33. Andersson, J.L., Graham, M.S., Zsoldos, E., Sotiropoulos, S.N.: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion mr images. Neuroimage 141, 556–572 (2016)

    Article  Google Scholar 

  34. Andersson, J.L., Graham, M.S., Drobnjak, I., Zhang, H., Campbell, J.: Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. Neuroimage 171, 277–295 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Yuchuan Qiao from Fudan University for the kindly help and useful discussions. We also appreciate Mr. Sarthak Kumar Maharana from University of Southern California for the help in tractography. Shuo Huang wants to thank Miss Yi Liu from University of Southern California for the help in editing the grammar of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Zhong, L., Shi, Y. (2023). Automated Mapping of Residual Distortion Severity in Diffusion MRI. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics