Skip to main content

Polycomb Repressive Complex 2 in Oncology

  • Chapter
  • First Online:
Epigenetics in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 190))

Abstract

Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.

Authors Yiran Guo and Yao Yu have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackledge NP, Klose RJ (2021) The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol 22:815–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Deevy O, Bracken AP (2019) PRC2 functions in development and congenital disorders. Development 146

    Google Scholar 

  4. Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science 357

    Google Scholar 

  5. Kim JJ, Kingston RE (2022) Context-specific Polycomb mechanisms in development. Nat Rev Genet

    Google Scholar 

  6. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570

    Google Scholar 

  7. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Parreno V, Martinez AM, Cavalli G (2022) Mechanisms of Polycomb group protein function in cancer. Cell Res 32:231–253

    Article  PubMed Central  PubMed  Google Scholar 

  9. Pasini D, di Croce L (2016) Emerging roles for Polycomb proteins in cancer. Curr Opin Genet Dev 36:50–58

    Article  CAS  PubMed  Google Scholar 

  10. Piunti A, Shilatifard A (2016) Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352:aad9780

    Google Scholar 

  11. Piunti A, Shilatifard A (2021) The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 22:326–345

    Article  CAS  PubMed  Google Scholar 

  12. Schuettengruber B, Bourbon HM, di Croce L, Cavalli G (2017) Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171:34–57

    Article  CAS  PubMed  Google Scholar 

  13. Vizan P, Beringer M, Ballare C, di Croce L (2015) Role of PRC2-associated factors in stem cells and disease. FEBS J 282:1723–1735

    Article  CAS  PubMed  Google Scholar 

  14. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part i: covalent histone modifications. Trends Mol Med 13:363–372

    Article  CAS  PubMed  Google Scholar 

  15. Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. Trends Mol Med 13:373–380

    Article  PubMed Central  PubMed  Google Scholar 

  16. Zhao S, Allis CD, Wang GG (2021) The language of chromatin modification in human cancers. Nat Rev Cancer 21:413–430

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15:57–67

    Article  CAS  PubMed  Google Scholar 

  18. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev 16:2893–2905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yu JR, Lee CH, Oksuz O, Stafford JM, Reinberg D (2019) PRC2 is high maintenance. Genes Dev 33:903–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878

    Article  CAS  PubMed  Google Scholar 

  21. Baile F, Gomez-Zambrano A, Calonje M (2022) Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. Plant Commun 3:100267

    Article  CAS  PubMed  Google Scholar 

  22. Sharaf A, Vijayanathan M, Oborník M, Mozgová I (2022) Phylogenetic profiling resolves early emergence of PRC2 and illuminates its functional core. Life Sci Alliance 5

    Google Scholar 

  23. Vijayanathan M, Trejo-Arellano MG, Mozgová I (2022) Polycomb repressive complex 2 in eukaryotes-an evolutionary perspective. Epigenomes 6

    Google Scholar 

  24. Chen Z, Zhang Y (2020) Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 21:555–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Francis NJ (2009) Does maintenance of Polycomb group proteins through DNA replication contribute to epigenetic inheritance? Epigenetics 4:370–373

    Google Scholar 

  26. Guo Y, Zhao S, Wang GG (2021) Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘Readout’, and phase separation-based compaction. Trends Genet 37:547–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547:419–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kendek A, Wensveen MR, Janssen A (2021) The sound of silence: how silenced chromatin orchestrates the repair of double-strand breaks. Genes (Basel) 12

    Google Scholar 

  29. Wang J, Wang GG (2020) No easy way out for EZH2: its pleiotropic, noncanonical effects on gene regulation and cellular function. Int J Mol Sci 21

    Google Scholar 

  30. Almeida M, Bowness JS, Brockdorff N (2020) The many faces of Polycomb regulation by RNA. Curr Opin Genet Dev 61:53–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM (2021) The control of polycomb repressive complexes by long noncoding RNAs. Wiley Interdiscip Rev RNA 12:e1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yi Y, Li Y, Meng Q, Li Q, Li F, Lu B, Shen J, Fazli L, Zhao D, Li C, Jiang W, Wang R, Liu Q, Szczepanski A, Li Q, Qin W, Weiner AB, Lotan TL, Ji Z, Kalantry S, Wang L, Schaeffer EM, Niu H, Dong X, Zhao W, Chen K, Cao Q (2021) A PRC2-independent function for EZH2 in regulating rRNA 2’-O methylation and IRES-dependent translation. Nat Cell Biol 23:341–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H (2019) EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 38

    Google Scholar 

  34. Finogenova K, Bonnet J, Poepsel S, Schafer IB, Finkl K, Schmid K, Litz C, Strauss M, Benda C, Muller J (2020) Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. Elife 9

    Google Scholar 

  35. Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active Polycomb repressive complex 2. Science 350:aac4383

    Google Scholar 

  36. Justin N, Zhang Y, Tarricone C, Martin SR, Chen S, Underwood E, de Marco V, Haire LF, Walker PA, Reinberg D, Wilson JR, Gamblin SJ (2016) Structural basis of oncogenic histone H3K27M inhibition of human Polycomb repressive complex 2. Nat Commun 7:11316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lee CH, Yu JR, Kumar S, Jin Y, Leroy G, Bhanu N, Kaneko S, Garcia BA, Hamilton AD, Reinberg D (2018) Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol Cell 70(422–434):e6

    Google Scholar 

  38. Poepsel S, Kasinath V, Nogales E (2018) Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat Struct Mol Biol 25:154–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Anwar T, Gonzalez ME, Kleer CG (2021) Noncanonical functions of the Polycomb group protein EZH2 in breast cancer. Am J Pathol 191:774–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Glancy E, Ciferri C, Bracken AP (2021) Structural basis for PRC2 engagement with chromatin. Curr Opin Struct Biol 67:135–144

    Article  CAS  PubMed  Google Scholar 

  41. Hojfeldt JW, Laugesen A, Willumsen BM, Damhofer H, Hedehus L, Tvardovskiy A, Mohammad F, Jensen ON, Helin K (2018) Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol 25:225–232

    Article  PubMed Central  PubMed  Google Scholar 

  42. Youmans DT, Schmidt JC, Cech TR (2018) Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 32:794–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Chammas P, Mocavini I, di Croce L (2020) Engaging chromatin: PRC2 structure meets function. Br J Cancer 122:315–328

    Article  CAS  PubMed  Google Scholar 

  44. Han Z, Xing X, Hu M, Zhang Y, Liu P, Chai J (2007) Structural basis of EZH2 recognition by EED. Structure 15:1306–1315

    Article  CAS  PubMed  Google Scholar 

  45. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ (2009) Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    Google Scholar 

  46. van Mierlo G, Veenstra GJC, Vermeulen M, Marks H (2019) The complexity of PRC2 subcomplexes. Trends Cell Biol 29:660–671

    Article  PubMed  Google Scholar 

  47. Xu C, Min J (2011) Structure and function of WD40 domain proteins. Protein Cell 2:202–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cai L, Rothbart SB, Lu R, Xu B, Chen WY, Tripathy A, Rockowitz S, Zheng D, Patel DJ, Allis CD, Strahl BD, Song J, Wang GG (2013) An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49:571–582

    Article  CAS  PubMed  Google Scholar 

  49. Chen S, Jiao L, Liu X, Yang X, Liu X (2020) A dimeric structural scaffold for PRC2-PCL targeting to CpG island chromatin. Mol Cell 77:1265-1278.e7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Li H, Liefke R, Jiang J, Kurland JV, Tian W, Deng P, Zhang W, He Q, Patel DJ, Bulyk ML, Shi Y, Wang Z (2017) Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549:287–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Beringer M, Pisano P, di Carlo V, Blanco E, Chammas P, Vizán P, Gutiérrez A, Aranda S, Payer B, Wierer M, di Croce L (2016) EPOP functionally links Elongin and Polycomb in pluripotent stem cells. Mol Cell 64:645–658

    Article  CAS  PubMed  Google Scholar 

  52. Liefke R, Karwacki-Neisius V, Shi Y (2016) EPOP interacts with Elongin BC and USP7 to modulate the chromatin landscape. Mol Cell 64:659–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Conway E, Jerman E, Healy E, Ito S, Holoch D, Oliviero G, Deevy O, Glancy E, Fitzpatrick DJ, Mucha M, Watson A, Rice AM, Chammas P, Huang C, Pratt-Kelly I, Koseki Y, Nakayama M, Ishikura T, Streubel G, Wynne K, Hokamp K, McLysaght A, Ciferri C, di Croce L, Cagney G, Margueron R, Koseki H, Bracken AP (2018) A family of vertebrate-specific Polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Mol Cell 70:408-421.e8

    Article  CAS  PubMed  Google Scholar 

  54. Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K, Aebersold R, Paro R, Gstaiger M, Beisel C (2016) A high-density map for navigating the human Polycomb complexome. Cell Rep 17:583–595

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Q, Agius SC, Flanigan SF, Uckelmann M, Levina V, Owen BM, Davidovich C (2021) PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nat Commun 12:4592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kasinath V, Beck C, Sauer P, Poepsel S, Kosmatka J, Faini M, Toso D, Aebersold R, Nogales E (2021) JARID2 and AEBP2 regulate PRC2 in the presence of H2AK119ub1 and other histone modifications. Science 371

    Google Scholar 

  57. Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R, Nogales E (2018) Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science 359:940–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, Mysliwiec MR, Wu LC, Guo Y, Yang W, Liu K, Pawlik KM, Erdjument-Bromage H, Tempst P, Lee Y, Min J, Townes TM, Wang H (2011) PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem cells 29:229–240

    Article  PubMed  Google Scholar 

  59. Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163

    Article  CAS  PubMed  Google Scholar 

  60. Kim KH, Roberts CW (2016) Targeting EZH2 in cancer. Nat Med 22:128–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lee CH, Yu JR, Granat J, Saldana-Meyer R, Andrade J, Leroy G, Jin Y, Lund P, Stafford JM, Garcia BA, Ueberheide B, Reinberg D (2019) Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes Dev 33:1428–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Xu J, Zhao X, Mao F, Basrur V, Ueberheide B, Chait BT, Allis CD, Taverna SD, Gao S, Wang W, Liu Y (2021) A Polycomb repressive complex is required for RNAi-mediated heterochromatin formation and dynamic distribution of nuclear bodies. Nucleic Acids Res

    Google Scholar 

  63. Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, Anil-Kirmizitas B, Bassett A, Kooistra SM, Agger K, Helin K, Heard E, Brockdorff N (2016) Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun 7:13661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Choi J, Bachmann AL, Tauscher K, Benda C, Fierz B, Muller J (2017) DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 24:1039–1047

    Article  CAS  PubMed  Google Scholar 

  65. Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M, Marks H, van Heeringen SJ, Veenstra GJC (2018) MTF2 recruits Polycomb repressive complex 2 by helical-shape-selective DNA binding. Nat Genet 50:1002–1010

    Article  CAS  PubMed  Google Scholar 

  66. Brien GL, Gambero G, O’Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, Lohan AJ, Ferguson N, Shi X, Sinha KM, Loftus BJ, Cagney G, Bracken AP (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19:1273–1281

    Article  CAS  PubMed  Google Scholar 

  67. Musselman CA, Gibson MD, Hartwick EW, North JA, Gatchalian J, Poirier MG, Kutateladze TG (2013) Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun 4:2969

    Article  PubMed  Google Scholar 

  68. Blackledge NP, Fursova NA, Kelley JR, Huseyin MK, Feldmann A, Klose RJ (2020) PRC1 catalytic activity is central to Polycomb system function. Mol Cell 77(857–874):e9

    Google Scholar 

  69. Blackledge NP, Rose NR, Klose RJ (2015) Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16:643–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, Monger C, Van Mierlo G, Baltissen MP, Koseki Y, Vermeulen M, Koseki H, Bracken AP (2019) PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Mol Cell 76:437–452 e6

    Google Scholar 

  71. Oksuz O, Narendra V, Lee CH, Descostes N, Leroy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, Skok JA, Reinberg D (2018) Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell 70(1149–1162):e5

    Google Scholar 

  72. Tamburri S, Lavarone E, Fernandez-Perez D, Conway E, Zanotti M, Manganaro D, Pasini D (2020) Histone H2AK119 mono-ubiquitination is essential for Polycomb-mediated transcriptional repression. Mol Cell 77(840–856):e5

    Google Scholar 

  73. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148:664–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ (2019) Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 15:e1007932

    Google Scholar 

  75. Pengelly AR, Copur O, Jackle H, Herzig A, Muller J (2013) A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339:698–699

    Article  CAS  PubMed  Google Scholar 

  76. Sankar A, Mohammad F, Sundaramurthy AK, Wang H, Lerdrup M, Tatar T, Helin K (2022) Histone editing elucidates the functional roles of H3K27 methylation and acetylation in mammals. Nat Genet 54:754–760

    Article  CAS  PubMed  Google Scholar 

  77. Lavarone E, Barbieri CM, Pasini D (2019) Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun 10:1679

    Article  PubMed Central  PubMed  Google Scholar 

  78. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, Tap WD, Fletcher JA, Huberman KH, Qin LX, Viale A, Singer S, Zheng D, Berger MF, Chen Y, Antonescu CR, Chi P (2014) PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 46:1227–1232

    Google Scholar 

  79. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, Mochizuki-Kashio M, Harada H, Shimoda K, Iwama A (2016) The loss of EZH2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med 213:1459–1477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Ren Z, Ahn JH, Liu H, Tsai YH, Bhanu NV, Koss B, Allison DF, Ma A, Storey AJ, Wang P, Mackintosh SG, Edmondson RD, Groen RWJ, Martens AC, Garcia BA, Tackett AJ, Jin J, Cai L, Zheng D, Wang GG (2019) PHF19 promotes multiple myeloma tumorigenicity through PRC2 activation and broad H3K27me3 domain formation. Blood 134:1176–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Streubel G, Watson A, Jammula SG, Scelfo A, Fitzpatrick DJ, Oliviero G, McCole R, Conway E, Glancy E, Negri GL, Dillon E, Wynne K, Pasini D, Krogan NJ, Bracken AP, Cagney G (2018) The H3K36me2 methyltransferase Nsd1 demarcates PRC2-mediated H3K27me2 and H3K27me3 domains in embryonic stem cells. Mol Cell 70(371–379):e5

    Google Scholar 

  82. Zheng Y, Sweet SM, Popovic R, Martinez-Garcia E, Tipton JD, Thomas PM, Licht JD, Kelleher NL (2012) Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A 109:13549–13554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Li J, Ahn JH, Wang GG (2019) Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci 76:2899–2916

    Article  CAS  PubMed  Google Scholar 

  84. Drosos Y, Myers JA, Xu B, Mathias KM, Beane EC, Radko-Juettner S, Mobley RJ, Larsen ME, Piccioni F, Ma X, Low J, Hansen BS, Peters ST, Bhanu NV, Dhanda SK, Chen T, Upadhyaya SA, Pruett-Miller SM, Root DE, Garcia BA, Partridge JF, Roberts CWM (2022) NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol Cell 82(2472–2489):e8

    Google Scholar 

  85. Shirane K, Miura F, Ito T, Lorincz MC (2020) NSD1-deposited H3K36me2 directs de novo methylation in the mouse male germline and counteracts Polycomb-associated silencing. Nat Genet 52:1088–1098

    Article  CAS  PubMed  Google Scholar 

  86. Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13:104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Sanulli S, Justin N, Teissandier A, Ancelin K, Portoso M, Caron M, Michaud A, Lombard B, da Rocha ST, Offer J, Loew D, Servant N, Wassef M, Burlina F, Gamblin SJ, Heard E, Margueron R (2015) Jarid2 methylation via the PRC2 complex regulates H3K27me3 deposition during cell differentiation. Mol Cell 57:769–783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. He A, Shen X, Ma Q, Cao J, von Gise A, Zhou P, Wang G, Marquez VE, Orkin SH, Pu WT (2012) PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev 26:37–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338:1465–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726

    Article  CAS  PubMed  Google Scholar 

  91. Kempf JM, Weser S, Bartoschek MD, Metzeler KH, Vick B, Herold T, Volse K, Mattes R, Scholz M, Wange LE, Festini M, Ugur E, Roas M, Weigert O, Bultmann S, Leonhardt H, Schotta G, Hiddemann W, Jeremias I, Spiekermann K (2021) Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Sci Rep 11:5838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    Article  CAS  PubMed  Google Scholar 

  93. Ntziachristos P, Tsirigos A, van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J, Asp P, Hadler M, Rigo I, de Keersmaecker K, Patel J, Huynh T, Utro F, Poglio S, Samon JB, Paietta E, Racevskis J, Rowe JM, Rabadan R, Levine RL, Brown S, Pflumio F, Dominguez M, Ferrando A, Aifantis I (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18:298–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Kang Y, Zhang Y, Sun Y (2021) Comprehensive Analysis of the expression characteristics of the enhancer of the Zeste homolog 2 gene in pan-cancer. Front Genet 12:658241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Thiel AT, Feng Z, Pant DK, Chodosh LA, Hua X (2013) The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPalpha and differentiation in MLL-AF9 leukemia. Haematologica 98:918–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Wang GG, Konze KD, Tao J (2015) Polycomb genes, miRNA, and their deregulation in B-cell malignancies. Blood 125:1217–1225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van Nimwegen E, Christofori G (2013) Sox4 is a master regulator of epithelial-mesenchymal transition by controlling EZH2 expression and epigenetic reprogramming. Cancer Cell 23:768–783

    Article  CAS  PubMed  Google Scholar 

  100. Cole MD (2014) MYC association with cancer risk and a new model of MYC-mediated repression. Cold Spring Harb Perspect Med 4:a014316

    Google Scholar 

  101. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  102. van Kemenade FJ, Raaphorst FM, Blokzijl T, Fieret E, Hamer KM, Satijn DP, Otte AP, Meijer CJ (2001) Coexpression of BMI-1 and EZH2 Polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 97:3896–3901

    Article  PubMed  Google Scholar 

  103. Visser HP, Gunster MJ, Kluin-Nelemans HC, Manders EM, Raaphorst FM, Meijer CJ, Willemze R, Otte AP (2001) The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma. Br J Haematol 112:950–958

    Article  CAS  PubMed  Google Scholar 

  104. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH, Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci U S A 109:5028–5033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Ren Z, Kim A, Huang YT, Pi WC, Gong W, Yu X, Qi J, Jin J, Cai L, Roeder RG, Chen WY, Wang GG (2022) A PRC2-Kdm5b axis sustains tumorigenicity of acute myeloid leukemia. Proc Natl Acad Sci U S A 119

    Google Scholar 

  106. Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C, Lowe SW, Vakoc CR (2013) The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 32:930–938

    Article  CAS  PubMed  Google Scholar 

  107. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, Suzuki Y, Sugano S, Nakaseko C, Yokote K, Koseki H, Iwama A (2012) Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 120:1107–1117

    Article  CAS  PubMed  Google Scholar 

  108. Xu B, Konze KD, Jin J, Wang GG (2015) Targeting EZH2 and PRC2 dependence as novel anticancer therapy. Exp Hematol 43:698–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG, Allison DF, Cai L, Rockowitz S, Liu S, Liu Y, Li F, Vedadi M, Frye SV, Garcia BA, Zheng D, Jin J, Wang GG (2015) Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood 125:346–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Bracken AP, Brien GL, Verrijzer CP (2019) Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 33:936–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Rothbart SB, Baylin SB (2020) Epigenetic therapy for epithelioid sarcoma. Cell 181:211

    Article  CAS  PubMed  Google Scholar 

  112. Veneti Z, Gkouskou KK, Eliopoulos AG (2017) Polycomb repressor complex 2 in genomic instability and cancer. Int J Mol Sci 18

    Google Scholar 

  113. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) PRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21:49–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Sharpless NE, Depinho RA (1999) The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9:22–30

    Article  CAS  PubMed  Google Scholar 

  116. Bardot ES, Valdes VJ, Zhang J, Perdigoto CN, Nicolis S, Hearn SA, Silva JM, Ezhkova E (2013) Polycomb subunits EZH1 and EZH2 regulate the Merkel cell differentiation program in skin stem cells. Embo J 32:1990–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A, Fuchs E (2009) EZH2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136:1122–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C, Lehner PJ, Sutherland KD, Dawson MA (2019) An evolutionarily conserved function of Polycomb silences the MHC Class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36(385–401):e8

    Google Scholar 

  119. Ennishi D, Takata K, Beguelin W, Duns G, Mottok A, Farinha P, Bashashati A, Saberi S, Boyle M, Meissner B, Ben-Neriah S, Woolcock BW, Telenius A, Lai D, Teater M, Kridel R, Savage KJ, Sehn LH, Morin RD, Marra MA, Shah SP, Connors JM, Gascoyne RD, Scott DW, Melnick AM, Steidl C (2019) Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov 9:546–563

    Article  PubMed  Google Scholar 

  120. Piunti A, Meghani K, Yu Y, Robertson AG, Podojil JR, McLaughlin KA, You Z, Fantini D, Chiang M, Luo Y, Wang L, Heyen N, Qian J, Miller SD, Shilatifard A, Meeks JJ (2022) Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma. Sci Adv 8:eabo8043

    Google Scholar 

  121. Jayabal P, Ma X, Shiio Y (2021) EZH2 suppresses endogenous retroviruses and an interferon response in cancers. Genes Cancer 12:96–105

    Article  PubMed Central  PubMed  Google Scholar 

  122. Patel AJ, Warda S, Maag JLV, Misra R, Miranda-Román MA, Pachai MR, Lee CJ, Li D, Wang N, Bayshtok G, Fishinevich E, Meng Y, Wong EWP, Yan J, Giff E, Pappalardi MB, McCabe MT, Fletcher JA, Rudin CM, Chandarlapaty S, Scandura JM, Koche RP, Glass JL, Antonescu CR, Zheng D, Chen Y, Chi P (2022) PRC2-inactivating mutations in cancer enhance cytotoxic response to DNMT1-targeted therapy via enhanced viral mimicry. Cancer Discov 12:2120–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, Grigsby S, Basrur V, Nesvizhskii AI, Muntean A, Gonzalez ME, Kidwell KM, Nikolovska-Coleska Z, Kleer CG (2018) P38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun 9:2801

    Article  PubMed Central  PubMed  Google Scholar 

  124. Jiao L, Shubbar M, Yang X, Zhang Q, Chen S, Wu Q, Chen Z, Rizo J, Liu X (2020) A partially disordered region connects gene repression and activation functions of EZH2. Proc Natl Acad Sci U S A 117:16992–17002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Liao Y, Chen CH, Xiao T, De La Pena Avalos B, Dray EV, Cai C, Gao S, Shah N, Zhang Z, Feit A, Xue P, Liu Z, Yang M, Lee JH, Xu H, Li W, Mei S, Pierre RS, Shu S, Fei T, Duarte M, Zhao J, Bradner JE, Polyak K, Kantoff PW, Long H, Balk SP, Liu XS, Brown M, Xu K (2022) Inhibition of EZH2 transactivation function sensitizes solid tumors to genotoxic stress. Proc Natl Acad Sci U S A 119

    Google Scholar 

  126. Wang J, Park KS, Yu X, Gong W, Earp HS, Wang GG, Jin J, Cai L (2022) A cryptic transactivation domain of EZH2 binds AR and AR’s splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res 50:10929–10946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Wang J, Yu X, Gong W, Liu X, Park KS, Ma A, Tsai YH, Shen Y, Onikubo T, Pi WC, Allison DF, Liu J, Chen WY, Cai L, Roeder RG, Jin J, Wang GG (2022) EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 24:384–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM, Copeland RA (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107:20980–20985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Souroullas GP, Jeck WR, Parker JS, Simon JM, Liu JY, Paulk J, Xiong J, Clark KS, Fedoriw Y, Qi J, Burd CE, Bradner JE, Sharpless NE (2016) An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat Med 22:632–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M, Marquez VE, Marra MA, Gascoyne RD, Humphries RK, Arrowsmith CH, Morin GB, Aparicio SA (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117:2451–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Majer CR, Jin L, Scott MP, Knutson SK, Kuntz KW, Keilhack H, Smith JJ, Moyer MP, Richon VM, Copeland RA, Wigle TJ (2012) A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett 586:3448–3451

    Article  CAS  PubMed  Google Scholar 

  133. MCCABE MT, GRAVES AP, GANJI G, DIAZ E, HALSEY WS, JIANG Y, SMITHEMAN KN, OTT HM, PAPPALARDI MB, ALLEN KE, CHEN SB, DELLA PIETRA A, DUL E, HUGHES AM, GILBERT SA, THRALL SH, TUMMINO PJ, KRUGER RG, BRANDT M, SCHWARTZ B, CREASY CL (2012a) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109:2989–2994

    Google Scholar 

  134. Ott HM, Graves AP, Pappalardi MB, Huddleston M, Halsey WS, Hughes AM, Groy A, Dul E, Jiang Y, Bai Y, Annan R, Verma SK, Knight SD, Kruger RG, Dhanak D, Schwartz B, Tummino PJ, Creasy CL, McCabe MT (2014) A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation. Mol Cancer Ther 13:3062–3073

    Article  CAS  PubMed  Google Scholar 

  135. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M, Shen H, Yang SN, Wang L, Ezponda T, Martinez-Garcia E, Zhang H, Zheng Y, Verma SK, McCabe MT, Ott HM, van Aller GS, Kruger RG, Liu Y, McHugh CF, Scott DW, Chung YR, Kelleher N, Shaknovich R, Creasy CL, Gascoyne RD, Wong KK, Cerchietti L, Levine RL, Abdel-Wahab O, Licht JD, Elemento O, Melnick AM (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23:677–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Berg T, Thoene S, Yap D, Wee T, Schoeler N, Rosten P, Lim E, Bilenky M, Mungall AJ, Oellerich T, Lee S, Lai CK, Umlandt P, Salmi A, Chang H, Yue L, Lai D, Cheng SW, Morin RD, Hirst M, Serve H, Marra MA, Morin GB, Gascoyne RD, Aparicio SA, Humphries RK (2014) A transgenic mouse model demonstrating the oncogenic role of mutations in the polycomb-group gene EZH2 in lymphomagenesis. Blood 123:3914–3924

    Article  CAS  PubMed  Google Scholar 

  137. Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S (2013) Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 123:5009–5022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Donaldson-Collier MC, Sungalee S, Zufferey M, Tavernari D, Katanayeva N, Battistello E, Mina M, Douglass KM, Rey T, Raynaud F, Manley S, Ciriello G, Oricchio E (2019) EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat Genet 51:517–528

    Article  CAS  PubMed  Google Scholar 

  139. Tiffen JC, Gunatilake D, Gallagher SJ, Gowrishankar K, Heinemann A, Cullinane C, Dutton-Regester K, Pupo GM, Strbenac D, Yang JY, Madore J, Mann GJ, Hayward NK, McArthur GA, Filipp FV, Hersey P (2015) Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget 6:27023–27036

    Article  PubMed Central  PubMed  Google Scholar 

  140. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, Elemento O (2010) EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 116:5247–5255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Beguelin W, Teater M, Meydan C, Hoehn KB, Phillip JM, Soshnev AA, Venturutti L, Rivas MA, Calvo-Fernandez MT, Gutierrez J, Camarillo JM, Takata K, Tarte K, Kelleher NL, Steidl C, Mason CE, Elemento O, Allis CD, Kleinstein SH, Melnick AM (2020) Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response. Cancer Cell 37(655–673):e11

    Google Scholar 

  142. Zimmerman SM, Nixon SJ, Chen PY, Raj L, Smith SR, Paolini RL, Lin PN, Souroullas GP (2022) Ezh 2(Y641F) mutations co-operate with Stat3 to regulate MHC class I antigen processing and alter the tumor immune response in melanoma. Oncogene 41:4983–4993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, Saunthararajah Y, Guinta K, Keddache MA, Putnam P, Sekeres MA, Moliterno AR, List AF, McDevitt MA, Maciejewski JP (2010) Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 24:1799–1804

    Article  CAS  PubMed  Google Scholar 

  144. Aries IM, Bodaar K, Karim SA, Chonghaile TN, Hinze L, Burns MA, Pfirrmann M, Degar J, Landrigan JT, Balbach S, Peirs S, Menten B, Isenhart R, Stevenson KE, Neuberg DS, Devidas M, Loh ML, Hunger SP, Teachey DT, Rabin KR, Winter SS, Dunsmore KP, Wood BL, Silverman LB, Sallan SE, van Vlierberghe P, Orkin SH, Knoechel B, Letai AG, Gutierrez A (2018) PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. J Exp Med 215:3094–3114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Gollner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein HU, Rohde C, Pabst C, Sauer T, Lerdrup M, Tavor S, Stolzel F, Herold S, Ehninger G, Kohler G, Pan KT, Urlaub H, Serve H, Dugas M, Spiekermann K, Vick B, Jeremias I, Berdel WE, Hansen K, Zelent A, Wickenhauser C, Muller LP, Thiede C, Muller-Tidow C (2017) Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med 23:69–78

    Article  PubMed  Google Scholar 

  146. Gu Z, Liu Y, Cai F, Patrick M, Zmajkovic J, Cao H, Zhang Y, Tasdogan A, Chen M, Qi L, Liu X, Li K, Lyu J, Dickerson KE, Chen W, Ni M, Merritt ME, Morrison SJ, Skoda RC, Deberardinis RJ, Xu J (2019) Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation. Cancer Discov 9:1228–1247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Mochizuki-Kashio M, Aoyama K, Sashida G, Oshima M, Tomioka T, Muto T, Wang C, Iwama A (2015) Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-dependent manner. Blood 126:1172–1183

    Article  CAS  PubMed  Google Scholar 

  148. Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, Boucher G, Chagnon P, Drouin S, Lambert R, Rondeau C, Bilodeau A, Lavallee S, Sauvageau M, Hebert J, Sauvageau G (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 26:651–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Andrieu GP, Kohn M, Simonin M, Smith CL, Cieslak A, Dourthe ME, Charbonnier G, Graux C, Huguet F, Lheritier V, Dombret H, Spicuglia S, Rousselot P, Boissel N, Asnafi V (2021) PRC2 loss of function confers a targetable vulnerability to BET proteins in T-ALL. Blood 138:1855–1869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Wassef M, Luscan A, Aflaki S, Zielinski D, Jansen P, Baymaz HI, Battistella A, Kersouani C, Servant N, Wallace MR, Romero P, Kosmider O, Just PA, Hivelin M, Jacques S, Vincent-Salomon A, Vermeulen M, Vidaud M, Pasmant E, Margueron R (2019) EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer. Proc Natl Acad Sci U S A 116:6075–6080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Broux M, Prieto C, Demeyer S, Vanden Bempt M, Alberti-Servera L, Lodewijckx I, Vandepoel R, Mentens N, Gielen O, Jacobs K, Geerdens E, Vicente C, De Bock CE, Cools J (2019) Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia. Blood 134:1323–1336

    Google Scholar 

  152. Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlacht BD, Reinberg D (2008) EZH1 and EZH2 maintain repressive chromatin through different mechanisms. Mol Cell 32:503–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC, Orkin SH (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32:491–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Li Z, Li M, Wang D, Hou P, Chen X, Chu S, Chai D, Zheng J, Bai J (2020) Post-translational modifications of EZH2 in cancer. Cell Biosci 10:143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  CAS  PubMed  Google Scholar 

  156. Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, Zhang Z, Wang YV, Huang L, Yuan M, Xia W, Chang WC, Huang WC, Liu CL, Chang YC, Liu J, Wu Y, Jin VX, Dai X, Guo J, Liu J, Jiang S, Li J, Asara JM, Brown M, Hung MC, Wei W (2018) Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell 69(279–291):e5

    Google Scholar 

  157. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, Bagchi A, Simon JA, Huang H (2010) Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 12:1108–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, Lee C, Joo KM, Rich JN, Nam DH, Lee J (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23:839–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Yan J, Li B, Lin B, Lee PT, Chung TH, Tan J, Bi C, Lee XT, Selvarajan V, Ng SB, Yang H, Yu Q, Chng WJ (2016) EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood 128:948–958

    Article  CAS  PubMed  Google Scholar 

  160. Wan J, Zhan J, Li S, Ma J, Xu W, Liu C, Xue X, Xie Y, Fang W, Chin YE, Zhang H (2015) PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res 43:3591–3604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, Hou Y, Yu W, Leng S, Feng D, Liu W, Zhang X, Wang Y (2019) Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep 29(1482–1498):e4

    Google Scholar 

  162. Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, Qiu T, Pan Q, Chen Q, Zhang G, Zang Y, Tan M, Zhang J, Li Q, Wang X, Jiang J, Qin J (2020) SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell 38(350–365):e7

    Google Scholar 

  163. Chu CS, Lo PW, Yeh YH, Hsu PH, Peng SH, Teng YC, Kang ML, Wong CH, Juan LJ (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A 111:1355–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Lo PW, Shie JJ, Chen CH, Wu CY, Hsu TL, Wong CH (2018) O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2. Proc Natl Acad Sci U S A 115:7302–7307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Chan HL, Morey L (2019) Emerging roles for Polycomb-group proteins in stem cells and cancer. Trends Biochem Sci 44:688–700

    Article  CAS  PubMed  Google Scholar 

  166. Huang J, Gou H, Yao J, Yi K, Jin Z, Matsuoka M, Zhao T (2021) The noncanonical role of EZH2 in cancer. Cancer Sci 112:1376–1382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Davies A, Nouruzi S, Ganguli D, Namekawa T, Thaper D, Linder S, Karaoglanoglu F, Omur ME, Kim S, Kobelev M, Kumar S, Sivak O, Bostock C, Bishop J, Hoogstraat M, Talal A, Stelloo S, van der Poel H, Bergman AM, Ahmed M, Fazli L, Huang H, Tilley W, Goodrich D, Feng FY, Gleave M, He HH, Hach F, Zwart W, Beltran H, Selth L, Zoubeidi A (2021) An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat Cell Biol 23:1023–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q, Licht JD, Zhao JC, Yu J (2018) Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep 25(2808–2820):e4

    Google Scholar 

  169. Davies AH, Beltran H, Zoubeidi A (2018) Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 15:271–286

    Article  CAS  PubMed  Google Scholar 

  170. Vanden Bempt M, Debackere K, Demeyer S, Van Thillo Q, Meeuws N, Fernandez CP, Provost S, Mentens N, Jacobs K, Gielen O, Nittner D, Ogawa S, Kataoka K, Graux C, Tousseyn T, Cools J, Dierickx D (2022) Aberrant MYCN expression drives oncogenic hijacking of EZH2 as a transcriptional activator in peripheral T cell lymphoma. Blood

    Google Scholar 

  171. Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, Kang W, Liu H, Qing G (2022) EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun 13:12

    Article  PubMed Central  PubMed  Google Scholar 

  172. Gonzalez ME, Duprie ML, Krueger H, Merajver SD, Ventura AC, Toy KA, Kleer CG (2011) Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res 71:2360–2370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Lawrence CL, Baldwin AS (2016) Non-canonical EZH2 transcriptionally activates RelB in triple negative breast cancer. PLoS ONE 11:e0165005

    Article  PubMed Central  PubMed  Google Scholar 

  174. Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RK, Liou YC, Yu Q (2011) Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol Cell 43:798–810

    Article  CAS  PubMed  Google Scholar 

  175. Li J, Xi Y, Li W, McCarthy RL, Stratton SA, Zou W, Li W, Dent SY, Jain AK, Barton MC (2017) TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. Oncogene 36:2991–3001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Volkel P, Bary A, Raby L, Chapart A, Dupret B, le Bourhis X, Angrand PO (2019) EZH1 arises from EZH2 gene duplication but its function is not required for zebrafish development. Sci Rep 9:4319

    Article  PubMed Central  PubMed  Google Scholar 

  177. Grau D, Zhang Y, Lee CH, Valencia-Sanchez M, Zhang J, Wang M, Holder M, Svetlov V, Tan D, Nudler E, Reinberg D, Walz T, Armache KJ (2021) Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nat Commun 12:714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Jung CK, Kim Y, Jeon S, Jo K, Lee S, Bae JS (2018) Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum Pathol 81:9–17

    Article  CAS  PubMed  Google Scholar 

  179. Klöppel G, Couvelard A, Hruban R, Klimstra D, Komminoth P, Osamura R, Perren A, Rindi GJL, France: World Health Organization (2017) Who classification of tumours of endocrine organs

    Google Scholar 

  180. Kirmizis A, Bartley SM, Farnham PJ (2003) Identification of the Polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2:113–121

    CAS  PubMed  Google Scholar 

  181. Lee SR, Roh YG, Kim SK, Lee JS, Seol SY, Lee HH, Kim WT, Kim WJ, Heo J, Cha HJ, Kang TH, Chung JW, Chu IS, Leem SH (2015) Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer. Clin Cancer Res 21:5391–5403

    Article  CAS  PubMed  Google Scholar 

  182. Cui Y, Chen J, He Z, Xiao Y (2013) SUZ12 depletion suppresses the proliferation of gastric cancer cells. Cell Physiol Biochem 31:778–784

    Article  CAS  PubMed  Google Scholar 

  183. Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, Hua X, Landen CN, Birrer MJ, Sanchez-Beato M, Zhang R (2012) SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res 10:1462–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Liu C, Shi X, Wang L, Wu Y, Jin F, Bai C, Song Y (2014) SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 35:6073–6082

    Article  CAS  PubMed  Google Scholar 

  185. Liu YL, Gao X, Jiang Y, Zhang G, Sun ZC, Cui BB, Yang YM (2015) Expression and clinicopathological significance of EED, SUZ12 and EZH2 mRNA in colorectal cancer. J Cancer Res Clin Oncol 141:661–669

    Article  CAS  PubMed  Google Scholar 

  186. Wu Y, Hu H, Zhang W, Li Z, Diao P, Wang D, Zhang W, Wang Y, Yang J, Cheng J (2018) SUZ12 is a novel putative oncogene promoting tumorigenesis in head and neck squamous cell carcinoma. J Cell Mol Med 22:3582–3594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Xia R, Jin FY, Lu K, Wan L, Xie M, Xu TP, De W, Wang ZX (2015) SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumour Biol 36:5341–5351

    Article  CAS  PubMed  Google Scholar 

  188. Yu H, Simons DL, Segall I, Carcamo-Cavazos V, Schwartz EJ, Yan N, Zuckerman NS, Dirbas FM, Johnson DL, Holmes SP, Lee PP (2012) PRC2/EED-EZH2 complex is up-regulated in breast cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS ONE 7:e51239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, Lu C, Chen SC, Wei L, Collins-Underwood JR, Ma J, Roberts KG, Pounds SB, Ulyanov A, Becksfort J, Gupta P, Huether R, Kriwacki RW, Parker M, McGoldrick DJ, Zhao D, Alford D, Espy S, Bobba KC, Song G, Pei D, Cheng C, Roberts S, Barbato MI, Campana D, Coustan-Smith E, Shurtleff SA, Raimondi SC, Kleppe M, Cools J, Shimano KA, Hermiston ML, Doulatov S, Eppert K, Laurenti E, Notta F, Dick JE, Basso G, Hunger SP, Loh ML, Devidas M, Wood B, Winter S, Dunsmore KP, Fulton RS, Fulton LL, Hong X, Harris CC, Dooling DJ, Ochoa K, Johnson KJ, Obenauer JC, Evans WE, Pui CH, Naeve CW, Ley TJ, Mardis ER, Wilson RK, Downing JR, Mullighan CG (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Shih AH, Abdel-Wahab O, Patel JP, Levine RL (2012) The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 12:599–612

    Article  CAS  PubMed  Google Scholar 

  191. Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY, Mori H, Inaba T, Ogawa S, Honda H (2012) EED mutants impair Polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 26:2557–2560

    Article  CAS  PubMed  Google Scholar 

  192. Zhang M, Wang Y, Jones S, Sausen M, McMahon K, Sharma R, Wang Q, Belzberg AJ, Chaichana K, Gallia GL, Gokaslan ZL, Riggins GJ, Wolinksy JP, Wood LD, Montgomery EA, Hruban RH, Kinzler KW, Papadopoulos N, Vogelstein B, Bettegowda C (2014) Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nat Genet 46:1170–1172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Wojcik JB, Marchione DM, Sidoli S, Djedid A, Lisby A, Majewski J, Garcia BA (2019) Epigenomic reordering induced by Polycomb loss drives oncogenesis but leads to therapeutic vulnerabilities in malignant peripheral nerve sheath tumors. Cancer Res 79:3205–3219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. de Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, Helin K, Hornick JL, Mautner V, Kehrer-Sawatzki H, Clapp W, Bradner J, Vidaud M, Upadhyaya M, Legius E, Cichowski K (2014) PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 514:247–251

    Article  PubMed  Google Scholar 

  195. Xue C, Wang K, Jiang X, Gu C, Yu G, Zhong Y, Liu S, Nie Y, Zhou Y, Yang H (2019) The down-regulation of SUZ12 accelerates the migration and invasion of liver cancer cells via activating ERK1/2 pathway. J Cancer 10:1375–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Zhang H, Fillmore Brainson C, Koyama S, Redig AJ, Chen T, Li S, Gupta M, Garcia-De-Alba C, Paschini M, Herter-Sprie GS, Lu G, Zhang X, Marsh BP, Tuminello SJ, Xu C, Chen Z, Wang X, Akbay EA, Zheng M, Palakurthi S, Sholl LM, Rustgi AK, Kwiatkowski DJ, Diehl JA, Bass AJ, Sharpless NE., Dranoff G, Hammerman PS, Ji H, Bardeesy N, Saur D, Watanabe H, Kim CF, Wong KK (2017) LKB1 inactivation drives lung cancer lineage switching governed by Polycomb repressive complex 2. Nat Commun 8:14922

    Google Scholar 

  197. Hou S, Han X, Ji H (2016) Squamous transition of lung adenocarcinoma and drug resistance. Trends Cancer 2:463–466

    Article  PubMed  Google Scholar 

  198. Youmans DT, Gooding AR, Dowell RD, Cech TR (2021) Competition between PRC2.1 and 2.2 subcomplexes regulates PRC2 chromatin occupancy in human stem cells. Mol Cell 81:488–501 e9

    Google Scholar 

  199. Gebre-Medhin S, Nord KH, Moller E, Mandahl N, Magnusson L, Nilsson J, Jo VY, Vult Von Steyern F, Brosjo O, Larsson O, Domanski HA, Sciot R, Debiec-Rychter M, Fletcher CD, Mertens F (2012) Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol 181:1069–1077

    Google Scholar 

  200. Hofvander J, Jo VY, Fletcher CDM, Puls F, Flucke U, Nilsson J, Magnusson L, Mertens F (2020) PHF1 fusions cause distinct gene expression and chromatin accessibility profiles in ossifying fibromyxoid tumors and mesenchymal cells. Mod Pathol 33:1331–1340

    Article  CAS  PubMed  Google Scholar 

  201. Micci F, Panagopoulos I, Bjerkehagen B, Heim S (2006) Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res 66:107–112

    Article  CAS  PubMed  Google Scholar 

  202. Panagopoulos I, Mertens F, Griffin CA (2008) An endometrial stromal sarcoma cell line with the JAZF1/PHF1 chimera. Cancer Genet Cytogenet 185:74–77

    Article  CAS  PubMed  Google Scholar 

  203. Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24:1884–1896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Procida T, Friedrich T, Jack APM, Peritore M, Bonisch C, Eberl HC, Daus N, Kletenkov K, Nist A, Stiewe T, Borggrefe T, Mann M, Bartkuhn M, Hake SB (2021) JAZF1, a novel p400/TIP60/NuA4 complex member, regulates H2A.Z acetylation at regulatory regions. Int J Mol Sci 22

    Google Scholar 

  205. Wang X, Ahmad S, Zhang Z, Cote J, Cai G (2018) Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat Commun 9:1147

    Article  PubMed Central  PubMed  Google Scholar 

  206. CHIANG S, VASUDEVARAJA V, SERRANO J, STEWART CJR, OLIVA E, MOMENI-BOROUJENI A, JUNGBLUTH AA, DA CRUZ PAULA A, DA SILVA EM, WEIGELT B, PARK KJ, SOSLOW RA, MURALI R, ELLENSON LH, BENAYED R, LADANYI M, ABU-RUSTUM NR, DICKSON MA, COHEN S, AGHAJANIAN C, HENSLEY ML, LEE CH, SNUDERL M, KONNER JA (2022) TSC2-mutant uterine sarcomas with JAZF1-SUZ12 fusions demonstrate hybrid features of endometrial stromal sarcoma and PEComa and are responsive to mTOR inhibition. Mod Pathol 35:117–127

    Google Scholar 

  207. Dewaele B, Przybyl J, Quattrone A, Finalet Ferreiro J, Vanspauwen V, Geerdens E, Gianfelici V, Kalender Z, Wozniak A, Moerman P, Sciot R, Croce S, Amant F, Vandenberghe P, Cools J, Debiec-Rychter M (2014) Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer 134:1112–1122

    Google Scholar 

  208. Fujiishi K, Nagata S, Kano R, Kubo C, Shirayanagi M, Ozaki M, Yamamoto T, Nakanishi K, Kamiura S, Nakatsuka SI (2019) JAZF1-SUZ12 endometrial stromal sarcoma forming subserosal masses with extraordinary uptake of fluorodeoxyglucose on positron emission tomography: a case report. Diagn Pathol 14:110

    Article  PubMed Central  PubMed  Google Scholar 

  209. Ma X, Wang J, Wang J, Ma CX, Gao X, Patriub V, Sklar JL (2017) The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget 8:4062–4078

    Article  PubMed  Google Scholar 

  210. Tokinaga A, Furuya M, Niino H, Udaka N, Asai-Sato M, Sekido H, Miyagi E (2014) Colonic low-grade endometrial stromal sarcoma and orthotopic endometrial stromal tumor with limited infiltration sharing the JAZF1-SUZ12 gene fusion. Pathol Int 64:178–182

    Article  CAS  PubMed  Google Scholar 

  211. Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Cote J (2022) Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 36:664–683

    Google Scholar 

  212. Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG (2022) JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 39:110889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Guo R, Zheng L, Park JW, Lv R, Chen H, Jiao F, Xu W, Mu S, Wen H, Qiu J, Wang Z, Yang P, Wu F, Hui J, Fu X, Shi X, Shi YG, Xing Y, Lan F, Shi Y (2014) BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 56:298–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J, Li B, Barton MC, Li W, Li H, Shi X (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. de Braekeleer E, Auffret R, Douet-Guilbert N, Basinko A, le Bris MJ, Morel F, de Braekeleer M (2014) Recurrent translocation (10;17)(p15;q21) in acute poorly differentiated myeloid leukemia likely results in ZMYND11-MBTD1 fusion. Leuk Lymphoma 55:1189–1190

    Article  PubMed  Google Scholar 

  216. Devoucoux M, Fort V, Khelifi G, Xu J, Alerasool N, Galloy M, Wong N, Bourriquen G, Fradet-Turcotte A, Taipale M, Hope K, Hussein SMI, Cote J (2022) Oncogenic ZMYND11-MBTD1 fusion protein anchors the NuA4/TIP60 histone acetyltransferase complex to the coding region of active genes. Cell Rep 39:110947

    Article  CAS  PubMed  Google Scholar 

  217. Li J, Galbo Jr PM, Gong W, Storey AJ, Tsai YH, Yu X, Ahn JH, Guo Y, Mackintosh SG, Edmondson RD, Byrum SD, Farrar JE, He S, Cai L, Jin J, Tackett AJ, Zheng D, Wang GG (2021b) ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat Commun 12:1045

    Google Scholar 

  218. Maganti HB, Jrade H, Cafariello C, Manias Rothberg JL, Porter CJ, Yockell-Lelievre J, Battaion HL, Khan ST, Howard JP, Li Y, Grzybowski AT, Sabri E, Ruthenburg AJ, Dilworth FJ, Perkins TJ, Sabloff M, Ito CY, Stanford WL (2018) Targeting the MTF2-MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy. Cancer Discov 8:1376–1389

    Google Scholar 

  219. Wang F, Gao Y, Lv Y, Wu Y, Guo Y, Du F, Wang S, Yu J, Cao X, Li PA (2020) Polycomb-like 2 regulates PRC2 components to affect proliferation in glioma cells. J Neurooncol 148:259–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Mason MJ, Schinke C, Eng CLP, Towfic F, Gruber F, Dervan A, White BS, Pratapa A, Guan Y, Chen H, Cui Y, Li B, Yu T, Chaibub Neto E, Mavrommatis K, Ortiz M, Lyzogubov V, Bisht K, Dai HY, Schmitz F, Flynt E, Dan R, Danziger SA, Ratushny A, Multiple Myeloma DC, Dalton WS, Goldschmidt H, Avet-Loiseau H, Samur M, Hayete B, Sonneveld P, Shain KH, Munshi N, Auclair D, Hose D, Morgan G, Trotter M, Bassett D, Goke J, Walker BA, Thakurta A, Guinney J (2020) Multiple Myeloma dream challenge reveals epigenetic regulator PHF19 as marker of aggressive disease. Leukemia 34:1866–1874

    Google Scholar 

  221. Deng Q, Hou J, Feng L, Lv A, Ke X, Liang H, Wang F, Zhang K, Chen K, Cui H (2018) PHF19 promotes the proliferation, migration, and chemosensitivity of glioblastoma to doxorubicin through modulation of the SIAH1/beta-catenin axis. Cell Death Dis 9:1049

    Article  PubMed Central  PubMed  Google Scholar 

  222. Jain P, Ballare C, Blanco E, Vizan P, Di Croce L (2020a) PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells Elife 9

    Google Scholar 

  223. Xu H, Hu YW, Zhao JY, Hu XM, Li SF, Wang YC, Gao JJ, Sha YH, Kang CM, Lin L, Huang C, Zhao JJ, Zheng L, Wang Q (2015) MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma. Oncol Rep 34:175–182

    Article  CAS  PubMed  Google Scholar 

  224. Walters ZS, Villarejo-Balcells B, Olmos D, Buist TW, Missiaglia E, Allen R, Al-Lazikani B, Garrett MD, Blagg J, Shipley J (2014) JARID2 is a direct target of the PAX3-FOXO1 fusion protein and inhibits myogenic differentiation of rhabdomyosarcoma cells. Oncogene 33:1148–1157

    Article  CAS  PubMed  Google Scholar 

  225. Cao J, Li H, Liu G, Han S, Xu P (2017) Knockdown of JARID2 inhibits the proliferation and invasion of ovarian cancer through the PI3K/Akt signaling pathway. Mol Med Rep 16:3600–3605

    Article  CAS  PubMed  Google Scholar 

  226. Lei X, Xu JF, Chang RM, Fang F, Zuo CH, Yang LY (2016) JARID2 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget 7:40266–40284

    Article  PubMed Central  PubMed  Google Scholar 

  227. Celik H, Koh WK, Kramer AC, Ostrander EL, Mallaney C, Fisher DAC, Xiang J, Wilson WC, Martens A, Kothari A, Fishberger G, Tycksen E, Karpova D, Duncavage EJ, Lee Y, Oh ST, Challen GA (2018) JARID2 functions as a tumor suppressor in myeloid neoplasms by repressing self-renewal in hematopoietic progenitor cells. Cancer Cell 34(741–756):e8

    Google Scholar 

  228. Zhang Q, Wang W, Gao Q (2020) Beta-TRCP-mediated AEBP2 ubiquitination and destruction controls cisplatin resistance in ovarian cancer. Biochem Biophys Res Commun 523:274–279

    Article  PubMed  Google Scholar 

  229. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  231. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Google Scholar 

  232. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, Zapatka M, Northcott PA, Sturm D, Wang W, Radlwimmer B, Hojfeldt JW, Truffaux N, Castel D, Schubert S, Ryzhova M, Seker-Cin H, Gronych J, Johann PD, Stark S, Meyer J, Milde T, Schuhmann M, Ebinger M, Monoranu CM, Ponnuswami A, Chen S, Jones C, Witt O, Collins VP, von Deimling A, Jabado N, Puget S, Grill J, Helin K, Korshunov A, Lichter P, Monje M, Plass C, Cho YJ, Pfister SM (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672

    Article  CAS  PubMed  Google Scholar 

  233. Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H, Krug B, Russo C, Bareke E, Marchione DM, Coradin M, Garcia BA, Jabado N, Majewski J (2020) H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33:108390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Stafford JM, Lee CH, Voigt P, Descostes N, Saldana-Meyer R, Yu JR, Leroy G, Oksuz O, Chapman JR, Suarez F, Modrek AS, Bayin NS, Placantonakis DG, Karajannis MA, Snuderl M, Ueberheide B, Reinberg D (2018) Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 4:eaau5935

    Google Scholar 

  236. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I, Zheng C, Johansen JV, Rapin N, Porse BT, Tvardovskiy A, Jensen ON, Olaciregui NG, Lavarino C, Sunol M, de Torres C, Mora J, Carcaboso AM, Helin K (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492

    Article  CAS  PubMed  Google Scholar 

  237. Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M, de Jay N, Deshmukh S, Chen CCL, Belle J, Mikael LG, Marchione DM, Li R, Nikbakht H, Hu B, Cagnone G, Cheung WA, Mohammadnia A, Bechet D, Faury D, McConechy MK, Pathania M, Jain SU, Ellezam B, Weil AG, Montpetit A, Salomoni P, Pastinen T, Lu C, Lewis PW, Garcia BA, Kleinman CL, Jabado N, Majewski J (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10:1262

    Article  PubMed Central  PubMed  Google Scholar 

  238. Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R, Sarkaria J, Zhang Z (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Krug B, de Jay N, Harutyunyan AS, Deshmukh S, Marchione DM, Guilhamon P, Bertrand KC, Mikael LG, McConechy MK, Chen CCL, Khazaei S, Koncar RF, Agnihotri S, Faury D, Ellezam B, Weil AG, Ursini-Siegel J, de Carvalho DD, Dirks PB, Lewis PW, Salomoni P, Lupien M, Arrowsmith C, Lasko PF, Garcia BA, Kleinman CL, Jabado N, Mack SC (2019) Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 36:338–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. Larson JD, Kasper LH, Paugh BS, Jin H, Wu G, Kwon CH, Fan Y, Shaw TI, Silveira AB, Qu C, Xu R, Zhu X, Zhang J, Russell HR, Peters JL, Finkelstein D, Xu B, Lin T, Tinkle CL, Patay Z, Onar-Thomas A, Pounds SB, Mckinnon PJ, Ellison DW, Zhang J, Baker SJ (2019) Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell 35:140–155 e7

    Google Scholar 

  241. Pajovic S, Siddaway R, Bridge T, Sheth J, Rakopoulos P, Kim B, Ryall S, Agnihotri S, Phillips L, Yu M, Li C, Milos S, Patel P, Srikanthan D, Huang A, Hawkins C (2020) Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 11:6216

    Google Scholar 

  242. Brown ZZ, Muller MM, Jain SU, Allis CD, Lewis PW, Muir TW (2014) Strategy for “detoxification” of a cancer-derived histone mutant based on mapping its interaction with the methyltransferase PRC2. J Am Chem Soc 136:13498–13501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Wang X, Paucek RD, Gooding AR, Brown ZZ, Ge EJ, Muir TW, Cech TR (2017) Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat Struct Mol Biol 24:1028–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Hubner JM, Muller T, Papageorgiou DN, Mauermann M, Krijgsveld J, Russell RB, Ellison DW, Pfister SM, Pajtler KW, Kool M (2019) EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro Oncol 21:878–889

    Article  PubMed Central  PubMed  Google Scholar 

  245. Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL, Cieslik M, Bajic A, Juretic N, Deshmukh S, Venneti S, Muir TW, Garcia BA, Jabado N, Lewis PW (2019) PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat Commun 10:2146

    Article  PubMed Central  PubMed  Google Scholar 

  246. Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ, Gibson TJ, Lundgren SM, Bondra ER, Deshmukh S, Harutyunyan AS, Juretic N, Jabado N, Harrison MM, Lewis PW (2020) H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol Cell 80(726–735):e7

    Google Scholar 

  247. Brien GL, Bressan RB, Monger C, Gannon D, Lagan E, Doherty AM, Healy E, Neikes H, Fitzpatrick DJ, Deevy O, Grant V, Marques-Torrejon MA, Alfazema N, Pollard SM, Bracken AP (2021) Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat Genet 53:1221–1232

    Article  CAS  PubMed  Google Scholar 

  248. Haag D, Mack N, Benites Goncalves Da Silva P, Statz B, Clark J, Tanabe K, Sharma T, Jager N, Jones DTW, Kawauchi D, Wernig M, Pfister SM (2021) H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 39:407–422 e13

    Google Scholar 

  249. Kfoury-Beaumont N, Prakasam R, Pondugula S, Lagas JS, Matkovich S, Gontarz P, Yang L, Yano H, Kim AH, Rubin JB, Kroll KL (2022) The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol 20:124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Furth N, Algranati D, Dassa B, Beresh O, Fedyuk V, Morris N, Kasper LH, Jones D, Monje M, Baker SJ, Shema E (2022) H3–K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Rep 39:110836

    Article  CAS  PubMed  Google Scholar 

  251. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, Haberler C, Yizhak K, Gojo J, Egervari K, Mount C, van Galen P, Bonal DM, Nguyen QD, Beck A, Sinai C, Czech T, Dorfer C, Goumnerova L, Lavarino C, Carcaboso AM, Mora J, Mylvaganam R, Luo CC, Peyrl A, Popovic M, Azizi A, Batchelor TT, Frosch MP, Martinez-Lage M, Kieran MW, Bandopadhayay P, Beroukhim R, Fritsch G, Getz G, Rozenblatt-Rosen O, Wucherpfennig KW, Louis DN, Monje M, Slavc I, Ligon KL, Golub TR, Regev A, Bernstein BE, Suva ML (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Piunti A, Smith ER, Morgan MAJ, Ugarenko M, Khaltyan N, Helmin KA, Ryan CA, Murray DC, Rickels RA, Yilmaz BD, Rendleman EJ, Savas JN, Singer BD, Bulun SE, Shilatifard A (2019) CATACOMB: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv 5:eaax2887

    Google Scholar 

  253. Krug B, Harutyunyan AS, Deshmukh S, Jabado N (2021) Polycomb repressive complex 2 in the driver’s seat of childhood and young adult brain tumours. Trends Cell Biol 31:814–828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  254. Ragazzini R, Perez-Palacios R, Baymaz IH, Diop S, Ancelin K, Zielinski D, Michaud A, Givelet M, Borsos M, Aflaki S, Legoix P, Jansen P, Servant N, Torres-Padilla ME, Bourc’His D, Fouchet P, Vermeulen M, Margueron R (2019) EZHIP constrains Polycomb repressive complex 2 activity in germ cells. Nat Commun 10:3858

    Article  PubMed Central  PubMed  Google Scholar 

  255. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17:1823–1828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Fan H, Guo Y, Tsai YH, Storey AJ, Kim A, Gong W, Edmondson RD, Mackintosh SG, Li H, Byrum SD, Tackett AJ, Cai L, Wang GG (2021) A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing. Nucleic Acids Res 49:4441–4455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Fan H, Lu J, Guo Y, Li D, Zhang ZM, Tsai YH, Pi WC, Ahn JH, Gong W, Xiang Y, Allison DF, Geng H, He S, Diao Y, Chen WY, Strahl BD, Cai L, Song J, Wang GG (2020) BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nat Genet 52:1384–1396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Zhao D, Zhang X, Guan H, Xiong X, Shi X, Deng H, Li H (2016) The BAH domain of BAHD1 is a histone H3K27me3 reader. Protein Cell 7:222–226

    Article  PubMed Central  PubMed  Google Scholar 

  259. Li Z, Fu X, Wang Y, Liu R, He Y (2018) Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat Genet 50:1254–1261

    Article  CAS  PubMed  Google Scholar 

  260. Qian S, Lv X, Scheid RN, Lu L, Yang Z, Chen W, Liu R, Boersma MD, Denu JM, Zhong X, Du J (2018) Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Nat Commun 9:2425

    Article  PubMed Central  PubMed  Google Scholar 

  261. Yang Z, Qian S, Scheid RN, Lu L, Chen X, Liu R, Du X, Lv X, Boersma MD, Scalf M, Smith LM, Denu JM, Du J, Zhong X (2018) EBS is a bivalent histone reader that regulates floral phase transition in arabidopsis. Nat Genet 50:1247–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Zhang YZ, Yuan J, Zhang L, Chen C, Wang Y, Zhang G, Peng L, Xie SS, Jiang J, Zhu JK, Du J, Duan CG (2020) Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in arabidopsis. Nat Commun 11:6212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Wiles ET, McNaught KJ, Kaur G, Selker JML, Ormsby T, Aravind L, Selker EU (2020) Evolutionarily ancient BAH-PHD protein mediates Polycomb silencing. Proc Natl Acad Sci U S A 117:11614–11623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Sardiu ME, Smith KT, Groppe BD, Gilmore JM, Saraf A, Egidy R, Peak A, Seidel CW, Florens L, Workman JL, Washburn MP (2014) Suberoylanilide hydroxamic acid (SAHA)-induced dynamics of a human histone deacetylase protein interaction network. Mol Cell Proteomics 13:3114–3125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  265. Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, le Guillou M, Champy MF, Wattenhofer-Donze M, Soubigou G, Ait-Si-ali S, Feunteun J, Sorg T, Coppee JY, Ferguson-Smith AC, Cossart P, Bierne H (2016) Role of the BAHD1 chromatin-repressive complex in placental development and regulation of steroid metabolism. PLoS Genet 12:e1005898

    Article  PubMed Central  PubMed  Google Scholar 

  266. Bierne H, Tham TN, Batsche E, Dumay A, Leguillou M, Kerneis-Golsteyn S, Regnault B, Seeler JS, Muchardt C, Feunteun J, Cossart P (2009) Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci U S A 106:13826–13831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Wang S, Fairall L, Pham K, Ragan TJ, Vashi D, Collins MO, Dominguez C, Schwabe JWR (2022e) An unexpected histone chaperone function for the MIER1 histone deacetylase complex. bioRxiv

    Google Scholar 

  268. Lin J, Bao X, Li XD (2021) A tri-functional amino acid enables mapping of binding sites for posttranslational-modification-mediated protein-protein interactions. Mol Cell 81(2669–2681):e9

    Google Scholar 

  269. Yang ZY, Yin SP, Ren Q, Lu DW, Tang T, Li Y, Sun YZ, Mo HB, Yin TJ, Yi ZY, Zhu JP, Zhang F, Chen H (2022) BAHD1 serves as a critical regulator of breast cancer cell proliferation and invasion. Breast Cancer 29:516–530

    Article  PubMed  Google Scholar 

  270. Boyle S, Flyamer IM, Williamson I, Sengupta D, Bickmore WA, Illingworth RS (2020) A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev 34:931–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, Pellegrini M, Plath K (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13:602–616

    Article  CAS  PubMed  Google Scholar 

  272. Du Z, Zheng H, Kawamura YK, Zhang K, Gassler J, Powell S, Xu Q, Lin Z, Xu K, Zhou Q, Ozonov EA, Veron N, Huang B, Li L, Yu G, Liu L, Au Yeung WK, Wang P, Chang L, Wang Q, He A, Sun Y, Na J, Sun Q, Sasaki H, Tachibana K, Peters A, Xie W (2020) Polycomb group proteins regulate chromatin architecture in mouse oocytes and early embryos. Mol Cell 77:825–839 e7

    Google Scholar 

  273. Kundu S, Ji F, Sunwoo H, Jain G, Lee JT, Sadreyev RI, Dekker J, Kingston RE (2017) Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol Cell 65(432–446):e5

    Google Scholar 

  274. Ogiyama Y, Schuettengruber B, Papadopoulos GL, Chang JM, Cavalli G (2018) Polycomb-dependent chromatin looping contributes to gene silencing during drosophila development. Mol Cell 71(73–88):e5

    Google Scholar 

  275. Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M, Segonds-Pichon A, Jurkowski W, Wingett SW, Tabbada K, Andrews S, Herman B, Leproust E, Osborne CS, Koseki H, Fraser P, Luscombe NM, Elderkin S (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet 47:1179–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Bhat KP, Ümit Kaniskan H, Jin J, Gozani O (2021) Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 20:265–286

    Google Scholar 

  277. Kaniskan H, Martini ML, Jin J (2018) Inhibitors of protein methyltransferases and demethylases. Chem Rev 118:989–1068

    Article  CAS  PubMed  Google Scholar 

  278. Hoy SM (2020) Tazemetostat: first approval. Drugs 80:513–521

    Google Scholar 

  279. Knutson SK, Warholic NM, Wigle TJ, Klaus CR, Allain CJ, Raimondi A, Porter Scott M, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM, Kuntz KW, Keilhack H (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A 110:7922–7927

    Google Scholar 

  280. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896

    Article  CAS  PubMed  Google Scholar 

  281. Itoh Y, Takada Y, Yamashita Y, Suzuki T (2022) Recent progress on small molecules targeting epigenetic complexes. Curr Opin Chem Biol 67:102130

    Article  CAS  PubMed  Google Scholar 

  282. Ma A, Stratikopoulos E, Park KS, Wei J, Martin TC, Yang X, Schwarz M, Leshchenko V, Rialdi A, Dale B, Lagana A, Guccione E, Parekh S, Parsons R, Jin J (2020) Discovery of a first-in-class EZH2 selective degrader. Nat Chem Biol 16:214–222

    Article  CAS  PubMed  Google Scholar 

  283. Mccabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A, Diaz E, Lafrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, Mchugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL (2012b) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112

    Google Scholar 

  284. Vaswani RG, Gehling VS, Dakin LA, Cook AS, Nasveschuk CG, Duplessis M, Iyer P, Balasubramanian S, Zhao F, Good AC, Campbell R, Lee C, Cantone N, Cummings RT, Normant E, Bellon SF, Albrecht BK, Harmange JC, Trojer P, Audia JE, Zhang Y, Justin N, Chen S, Wilson JR, Gamblin SJ (2016) Identification of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J Med Chem 59:9928–9941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  285. Lakhani NJ, Gutierrez M, Duska LR, Do KT, Sharma M, Gandhi L, Papadopoulos KP, Truong J, Fan X, Lee JH, Bobba S, Rippley R, Wu R, Cui J, Sun K, Wang JY, Trojer P, Rasco DW (2021) Phase 1/2 first-in-human (FIH) study of CPI-0209, a novel small molecule inhibitor of enhancer of Zeste homolog 2 (EZH2) in patients with advanced tumors. J Clin Oncol 39:3104–3104

    Article  Google Scholar 

  286. Kung PP, Bingham P, Brooun A, Collins M, Deng YL, Dinh D, Fan C, Gajiwala KS, Grantner R, Gukasyan HJ, Hu W, Huang B, Kania R, Kephart SE, Krivacic C, Kumpf RA, Khamphavong P, Kraus M, Liu W, Maegley KA, Nguyen L, Ren S, Richter D, Rollins RA, Sach N, Sharma S, Sherrill J, Spangler J, Stewart AE, Sutton S, Uryu S, Verhelle D, Wang H, Wang S, Wythes M, Xin S, Yamazaki S, Zhu H, Zhu J, Zehnder L, Edwards M (2018) Optimization of orally bioavailable enhancer of Zeste homolog 2 (EZH2) inhibitors using ligand and property-based design strategies: identification of development candidate (R)-5,8-dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (PF-06821497). J Med Chem 61:650–665

    Article  CAS  PubMed  Google Scholar 

  287. Li C, Wang Y, Gong Y, Zhang T, Huang J, Tan Z, Xue L (2021) Finding an easy way to harmonize: a review of advances in clinical research and combination strategies of EZH2 inhibitors. Clin Epigenetics 13:62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  288. Song Y, Liu Y, Li Z-M, Li L, Su H, Jin Z, Zuo X, Wu J, Zhou H, Li K, He C, Zhou J, Qi J, Hao S, Cai Z, Li Y, Wang W, Zhang X, Zou J, Zhu J (2022) SHR2554, an EZH2 inhibitor, in relapsed or refractory mature lymphoid neoplasms: a first-in-human, dose-escalation, dose-expansion, and clinical expansion phase 1 trial. The Lancet Haematol 9:e493–e503

    Article  CAS  PubMed  Google Scholar 

  289. Wang X, Wang D, Ding N, Mi L, Yu H, Wu M, Feng F, Hu L, Zhang Y, Zhong C, Ye Y, Li J, Fang W, Shi Y, Deng L, Ying Z, Song Y, Zhu J (2021) The synergistic anti-tumor activity of EZH2 inhibitor SHR2554 and HDAC inhibitor chidamide through ORC1 reduction of DNA replication process in diffuse large B cell lymphoma. Cancers (Basel) 13

    Google Scholar 

  290. Morishima S, Ishitsuka K, Izutsu K, Kusumoto S, Makiyama J, Utsunomiya A, Nosaka K, Ishida T, Imaizumi Y, Yamauchi N, Araki K, Adachi N, Yamashita T, Atsumi R, Tsukasaki K, Tobinai K (2019) First-in-human study of the EZH1/2 dual inhibitor valemetostat in relapsed or refractory non-hodgkin lymphoma (NHL)—updated results focusing on adult T-Cell leukemia-lymphoma (ATL). Blood 134:4025–4025

    Article  Google Scholar 

  291. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J (2013) An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol 8:1324–1334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  292. Yang X, Li F, Konze KD, Meslamani J, Ma A, Brown PJ, Zhou MM, Arrowsmith CH, Kaniskan H, Vedadi M, Jin J (2016) Structure-activity relationship studies for enhancer of Zeste homologue 2 (EZH2) and enhancer of Zeste homologue 1 (EZH1) inhibitors. J Med Chem 59:7617–7633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  293. Dale B, Cheng M, Park KS, Kaniskan H, Xiong Y, Jin J (2021) Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer 21:638–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  294. Wang C, Chen X, Liu X, Lu D, Li S, Qu L, Yin F, Luo H, Zhang Y, Luo Z, Cui N, Kong L, Wang X (2022) Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur J Med Chem 238:114462

    Article  CAS  PubMed  Google Scholar 

  295. Liu Z, Hu X, Wang Q, Wu X, Zhang Q, Wei W, Su X, He H, Zhou S, Hu R, Ye T, Zhu Y, Wang N, Yu L (2021) Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2. J Med Chem 64:2829–2848

    Article  CAS  PubMed  Google Scholar 

  296. Tu Y, Sun Y, Qiao S, Luo Y, Liu P, Jiang ZX, Hu Y, Wang Z, Huang P, Wen S (2021) Design, synthesis, and evaluation of VHL-based EZH2 degraders to enhance therapeutic activity against lymphoma. J Med Chem 64:10167–10184

    Article  CAS  PubMed  Google Scholar 

  297. Dale B, Anderson C, Park K-S, Kaniskan HÜ, Ma A, Shen Y, Zhang C, Xie L, Chen X, Yu X, Jin J (2022) Targeting triple-negative breast cancer by a novel proteolysis targeting chimera degrader of enhancer of Zeste homolog 2. ACS Pharmacol Transl Sci 5:491–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Liu KL, Zhu K, Zhang H (2022) An overview of the development of EED inhibitors to disable the PRC2 function. RSC Med Chem 13:39–53

    Article  CAS  PubMed  Google Scholar 

  299. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, Zhang M, Zhang J, Yu Z, Li L, Teng L, Chuai S, Zhang C, Zhao M, Chan H, Chen Z, Fang D, Fei Q, Feng L, Feng L, Gao Y, Ge H, Ge X, Li G, Lingel A, Lin Y, Liu Y, Luo F, Shi M, Wang L, Wang Z, Yu Y, Zeng J, Zeng C, Zhang L, Zhang Q, Zhou S, Oyang C, Atadja P, Li E (2017) An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol 13:381–388

    Article  CAS  PubMed  Google Scholar 

  300. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, Shaw B, The J, Lima-Fernandes E, Szewczyk MM, Cheng D, Klinge KL, Li HQ, Pliushchev M, Algire MA, Maag D, Guo J, Dietrich J, Panchal SC, Petros AM, Sweis RF, Torrent M, Bigelow LJ, Senisterra G, Li F, Kennedy S, Wu Q, Osterling DJ, Lindley DJ, Gao W, Galasinski S, Barsyte-Lovejoy D, Vedadi M, Buchanan FG, Arrowsmith CH, Chiang GG, Sun C, Pappano WN (2017) The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol 13:389–395

    Article  CAS  PubMed  Google Scholar 

  301. Dong H, Liu S, Zhang X, Chen S, Kang L, Chen Y, Ma S, Fu X, Liu Y, Zhang H, Zou B (2019) An allosteric PRC2 inhibitor targeting EED suppresses tumor progression by modulating the immune response. Cancer Res 79:5587–5596

    Article  CAS  PubMed  Google Scholar 

  302. Rej RK, Wang C, Lu J, Wang M, Petrunak E, Zawacki KP, McEachern D, Fernandez-Salas E, Yang CY, Wang L, Li R, Chinnaswamy K, Wen B, Sun D, Stuckey J, Zhou Y, Chen J, Tang G, Wang S (2020) EEDi-5285: an exceptionally potent, efficacious, and orally active small-molecule inhibitor of embryonic ectoderm development. J Med Chem 63:7252–7267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  303. Huang D, Tian S, Qi Y, Zhang JZH (2020) Binding modes of small-molecule inhibitors to the EED pocket of PRC2. ChemPhysChem 21:263–271

    Article  CAS  PubMed  Google Scholar 

  304. Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD, Orkin SH (2013) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. Nat Chem Biol 9:643–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  305. Kong X, Chen L, Jiao L, Jiang X, Lian F, Lu J, Zhu K, Du D, Liu J, Ding H, Zhang N, Shen J, Zheng M, Chen K, Liu X, Jiang H, Luo C (2014) Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of Polycomb repressive complex 2. J Med Chem 57:9512–9521

    Article  CAS  PubMed  Google Scholar 

  306. Chen H, Gao S, Li J, Liu D, Sheng C, Yao C, Jiang W, Wu J, Chen S, Huang W (2015) Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer. Oncotarget 6:13049–13059

    Article  PubMed Central  PubMed  Google Scholar 

  307. Du D, Xu D, Zhu L, Stazi G, Zwergel C, Liu Y, Luo Z, Li Y, Zhang Y, Zhu K, Ding Y, Liu J, Fan S, Zhao K, Zhang N, Kong X, Jiang H, Chen K, Zhao K, Valente S, Min J, Duan W, Luo C (2021) Structure-guided development of small-molecule PRC2 inhibitors targeting EZH2-EED interaction. J Med Chem 64:8194–8207

    Article  CAS  PubMed  Google Scholar 

  308. Potjewyd F, Turner AW, Beri J, Rectenwald JM, Norris-Drouin JL, Cholensky SH, Margolis DM, Pearce KH, Herring LE, James LI (2020) Degradation of Polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem Biol 27:47-56.e15

    Article  CAS  PubMed  Google Scholar 

  309. Hsu JH, Rasmusson T, Robinson J, Pachl F, Read J, Kawatkar S, Dh OD, Bagal S, Code E, Rawlins P, Argyrou A, Tomlinson R, Gao N, Zhu X, Chiarparin E, Jacques K, Shen M, Woods H, Bednarski E, Wilson DM, Drew L, Castaldi MP, Fawell S, Bloecher A (2020) EED-Targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem Biol 27:41-46.e17

    Article  CAS  PubMed  Google Scholar 

  310. McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB (2007) DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res 67:5097–5102

    Article  CAS  PubMed  Google Scholar 

  311. Vlachostergios PJ (2021) Polycomb repressive complex 2 mutations predict survival benefit in advanced cancer patients treated with immune checkpoint inhibitors. Immunooncol Technol 10:100035

    Google Scholar 

Download references

Acknowledgements

We graciously thank Dr. Shuai Zhao for assistance with illustration of PRC2 structure. This work was supported by National Institutes of Health (NIH) grants awarded to GGW (R01-CA215284 and R01-CA218600). GGW is a Leukemia and Lymphoma Society (LLS) Scholar.

Author Contributions

All authors were involved in writing, reviewing, and editing of the article.

Conflict of Interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiran Guo or Gang Greg Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, Y., Yu, Y., Wang, G.G. (2023). Polycomb Repressive Complex 2 in Oncology. In: Chen, J., Wang, G.G., Lu, J. (eds) Epigenetics in Oncology . Cancer Treatment and Research, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-45654-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45654-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45653-4

  • Online ISBN: 978-3-031-45654-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics