Skip to main content

Avalanche Risk Analysis by a Combined Geographic Information System and Bayesian Best-Worst Method

  • Conference paper
  • First Online:
Advances in Best-Worst Method (BWM 2023)

Abstract

The formation of avalanches is related to the land structure, climatic conditions, and snow cover. It is usually seen in mountainous and sloping terrains without vegetation. In Turkey, especially in Eastern Anatolia and the Black Sea Region, which have high elevations, avalanche events are observed. This study aims to perform a risk analysis by integrating the Bayesian Best-Worst method (BWM) and Geographic Information System (GIS) for Tunceli province, which is the scene of significant avalanche events. Bayesian BWM is a method that improves the original BWM by effectively integrating the preferences of multiple experts. In the study, 16 sub-criteria, such as elevation, slope, and the number of snowy days, were determined, and experts evaluated these criteria through questionnaires created. The weight of each criterion were calculated using the Bayesian-BWM. By integrating the criteria weights from the Bayesian-BWM model into GIS, the risky places for natural avalanche disasters in Tunceli province were determined, according to which the risk in the northern part of the study area is identified as high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasery, S., & Kalkan, K. (2021). Snow avalanche risk mapping using GIS-based multi-criteria decision analysis: The case of Van, Turkey. Arabian Journal of Geosciences, 14(9), 782.

    ArticleĀ  Google ScholarĀ 

  2. Yariyan, P., Avand, M., Abbaspour, R. A., Karami, M., & Tiefenbacher, J. P. (2020). GIS-based spatial modeling of snow avalanches using four novel ensemble models. Science of The Total Environment, 745, 141008.

    ArticleĀ  Google ScholarĀ 

  3. Van Herwijnen, A., & Schweizer, J. (2011). Seismic sensor array for monitoring an avalanche start zone: Design, deployment and preliminary results. Journal of Glaciology, 57(202), 267ā€“276.

    ArticleĀ  Google ScholarĀ 

  4. Kumar, S., Srivastava, P. K., & Bhatiya, S. (2019). Geospatial probabilistic modelling for release area mapping of snow avalanches. Cold Regions Science and Technology, 165, 102813.

    ArticleĀ  Google ScholarĀ 

  5. Schweizer, J., Bruce Jamieson, J., & Schneebeli, M. (2003). Snow avalanche formation.Ā Reviews of Geophysics,Ā 41(4).

    Google ScholarĀ 

  6. Rahmati, O., Ghorbanzadeh, O., Teimurian, T., Mohammadi, F., Tiefenbacher, J. P., Falah, F., & Bui, D. T. (2019). Spatial modeling of snow avalanche using machine learning models and geo-environmental factors: Comparison of effectiveness in two mountain regions. Remote Sensing, 11(24), 2995.

    ArticleĀ  Google ScholarĀ 

  7. Kumar, S., Srivastava, P. K., & Snehmani. (2017). GIS-based MCDAā€“AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya.Ā Geocarto International,Ā 32(11), 1254ā€“1267.

    Google ScholarĀ 

  8. Bhargavi, P., & Jyothi, S. (2009). Applying naive bayes data mining technique for classification of agricultural land soils. International Journal of Computer Science and Network Security, 9(8), 117ā€“122.

    Google ScholarĀ 

  9. Mainieri, R., Favillier, A., Lopez-Saez, J., Eckert, N., Zgheib, T., Morel, P., Saulnier, M., Peiry, J.L., Stoffel, M., & Corona, C. (2020). Impacts of land-cover changes on snow avalanche activity in the French Alps.Ā Anthropocene,Ā 30, 100244

    Google ScholarĀ 

  10. Ilie, L. A., Comănescu, L., Dobre, R., Nedelea, A., Săvulescu, I., Bradea, I. A., & Boloș, M. I. (2020). Fuzzy techniques for artificial snow cover optimization in the ski areas. case study: ObĆ¢rșia Lotrului (Southern Carpathians, Romania).Ā Sustainability,Ā 12(2), 632.

    Google ScholarĀ 

  11. SelƧuk, L. (2013). An avalanche hazard model for Bitlis Province, Turkey, using GIS based multicriteria decision analysis. Turkish Journal of Earth Sciences, 22, 523ā€“535. https://doi.org/10.3906/yer-1201-10

    ArticleĀ  Google ScholarĀ 

  12. Chapi, K., Rudra, R. P., Ahmed, S. I., Khan, A. A., Gharabaghi, B., Dickinson, W. T., & Goel, P. K. (2015). Spatial-temporal dynamics of runoff generation areas in a small agricultural watershed in southern Ontario. Journal of Water Resource and Protection, 7(01), 14.

    ArticleĀ  Google ScholarĀ 

  13. Nefeslioglu, H. A., Sezer, E. A., Gokceoglu, C., & Ayas, Z. (2013). A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments. Computers & Geosciences, 59, 1ā€“8.

    ArticleĀ  Google ScholarĀ 

  14. Parshad, R., Srivastva, P. K., Snehmani, G., & Snehmani, S. (2017). Snow avalanche susceptibility mapping using remote sensing and GIS in Nubra-Shyok Basin, Himalaya, India. Indian Journal of Science and Technology, 10(31), 1ā€“12.

    ArticleĀ  Google ScholarĀ 

  15. Varol, N. (2022). Avalanche susceptibility mapping with the use of frequency ratio, fuzzy and classical analytical hierarchy process for Uzungol area, Turkey. Cold Regions Science and Technology, 194, 103439. https://doi.org/10.1016/j.coldregions.2021.103439

    ArticleĀ  Google ScholarĀ 

  16. Durlević, U., Valjarević, A., Novković, I., Ćurčić, N. B., Smiljić, M., Morar, C., & Lukić, T. (2022). GIS-based spatial modeling of snow avalanches using analytic Hierarchy process. a case study of the Å ar Mountains, Serbia.Ā Atmosphere,Ā 13(8), 1229.

    Google ScholarĀ 

  17. Alves, M. A., Meneghini, I. R., Gaspar-Cunha, A., & GuimarĆ£es, F. G., Machine learning-driven approach for large scale decision making with the analytic hierarchy process.Ā Mathematics,Ā 11(3), 627.

    Google ScholarĀ 

  18. Sakhardande, M. J., & Gaonkar, R. S. P. (2022). On solving large data matrix problems in Fuzzy AHP. Expert Systems with Applications, 194, 116488.

    ArticleĀ  Google ScholarĀ 

  19. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49ā€“57.

    ArticleĀ  Google ScholarĀ 

  20. Mohammadi, M., & Rezaei, J. (2020). Bayesian best-worst method: A probabilistic group decision making model. Omega, 96, 102075.

    ArticleĀ  Google ScholarĀ 

  21. Kalpoe, R. (2020). Technology acceptance and return management in apparel e-commerce. Journal of supply chain management science, 1(3ā€“4), 118ā€“137.

    Google ScholarĀ 

  22. Hashemkhani Zolfani, S., Bazrafshan, R., Ecer, F., & Karamaşa, Ƈ. (2022). The suitability-feasibility-acceptability strategy integrated with Bayesian BWM-MARCOS methods to determine the optimal lithium battery plant located in South America. Mathematics, 10(14), 2401

    Google ScholarĀ 

  23. Lo, H. W., & Liou, J. J. (2021). An integrated Bayesian BWM and classifiable TOPSIS model for risk assessment. In Multi-criteria decision analysis for risk assessment and management (pp. 21ā€“51).

    Google ScholarĀ 

  24. Yang, C. C., Shen, C. C., Mao, T. Y., Lo, H. W., & Pai, C. J. (2022). A hybrid model for assessing the performance of medical tourism: integration of Bayesian BWM and grey Promethee-AL. Journal of Function Spaces.

    Google ScholarĀ 

  25. McClung, D., & Schaerer, P. (1993). The avalanche handbook (p. 271). The Mountaineers, Seattle, WA.

    Google ScholarĀ 

  26. Stethem, C., Jamieson, B., Schaerer, P., Liverman, D., Germain, D., & Walker, S. (2003). Snow avalanche hazard in Canadaā€“a review. Natural Hazards, 28, 487ā€“515.

    ArticleĀ  Google ScholarĀ 

  27. Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., PavÅ”ek, M., & Darms, G. (2016). Avalanche fatalities in the european alps: Long- term trends and Sta statistics. Geograpica Helvetica, 71(2), 147ā€“159.

    ArticleĀ  Google ScholarĀ 

  28. Zweifel, B., Techel, F., Bjƶrk, C. (2007). Who is involved in a avalanche accidents. In Proceedings International Snow Science Workshop (pp. 234ā€“239)

    Google ScholarĀ 

  29. Hebertson, E. G., & Jenkins, M. J. (2003). Historic climate factors associated with major avalanche years on the Wasatch Plateau. Cold Regions Science and Technology, 37(3), 315ā€“332.

    ArticleĀ  Google ScholarĀ 

  30. Marek, B., Ivan, B. (2010). Spatial modelling of snow avalanche run-outs using GIS. In Proceedings From Symposium GIS, Ostrava.

    Google ScholarĀ 

  31. GĆ¼rer, Ä°. (1995). Ć‡Ä±ÄŸ Afeti ve Ɯlkemizdeki Ƈalışmalar TĆ¼rkiye MĆ¼hendislik Haberleri, 379, 66ā€“71.

    Google ScholarĀ 

  32. Yavaş, Ɩ. M., Erenbilge, T., Seyfe, N., Ayhan, A. (2007). Ć‡Ä±ÄŸlar, TĆ¼rkiyeā€™deki Etkileri ve Ɩnlemede Kullanılan Yƶntemler. Afet İşleri Genel MĆ¼dĆ¼rlĆ¼ÄŸĆ¼, GeƧici Ä°skĆ¢n Dairesi Başkanlığı.

    Google ScholarĀ 

  33. Avşin, N., Ƈakı, D. T. (2021). Determination of the avalanche susceptibility areas on the Ƈatak- BahƧesaray (Van) highway. Journal of Geomorphological Researches (7), 30ā€“47. https://doi.org/10.46453/jader.911574

  34. Ekinci, R., BĆ¼yĆ¼ksaraƧ, A., Ekinci, Y. L., & Işık, E. (2020). Bitlis Ä°linin Doğal Afet Ƈeşitliliğinin Değerlendirilmesi. Artvin Ƈoruh Ɯniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi Doğal Afetler ve Ƈevre Dergisi, 6(1), 1ā€“11.

    Google ScholarĀ 

  35. Elmastaş, N., & Ɩzcanlı, M. (2012). Bitlis Ä°linde Ć‡Ä±ÄŸ Afet Alanlarının Tespiti ve Ć‡Ä±ÄŸ Risk Analizi. Journal of International Social Research, 5(23), 303ā€“314.

    Google ScholarĀ 

  36. Işık, F., Bahadır, M., & Uzun, A. (2019). KaraƧam Deresi Havzasıā€™nda Ć‡Ä±ÄŸa Duyarlı Alanların Belirlenmesi (Trabzon, TĆ¼rkiye). Doğu Coğrafya Dergisi, 24(42), 1ā€“15.

    Google ScholarĀ 

  37. Ɩzşahin, E., & Kaymaz, Ƈ. K. (2014). Avalanche susceptibility and risk analysis of Eastern Anatolian region using GIS. Procedia-Social and Behavioral Sciences, 120, 663ā€“672.

    ArticleĀ  Google ScholarĀ 

  38. Nasery, S., & Kalkan, K. (2021). Snow avalanche risk mapping using GIS-based multi-criteria decision analysis: The case of Van, Turkey. Arabian Journal of Geosciences, 14, 782. https://doi.org/10.1007/s12517-021-07112-4

    ArticleĀ  Google ScholarĀ 

  39. Wen, H., Wu, S., Liao, X., Wang, D., Huang, K., & WĆ¼nnemann, B. (2022). Application of machine learning methods for snow avalanche susceptibility mapping in the Parlung Tsangpo catchment, southeastern Qinghai-Tibet Plateau, Cold Regions Science and Technology, V. 198. https://doi.org/10.1016/j.coldregions.2022.103535

  40. GrĆŖt-Regamey, A., & Straub, D. (2006). Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Natural Hazards and Earth Systems Sciences, 6, 911ā€“926. https://doi.org/10.5194/nhess-6-911-

    ArticleĀ  Google ScholarĀ 

  41. Ayyildiz, E., & Erdogan, M. (2022). Identifying and prioritizing the factors to determine best insulation material using Bayesian best worst method. In Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221111586.

    Google ScholarĀ 

  42. Debnath, B., Shakur, M. S., Bari, A. M., & Karmaker, C. L. (2023). A Bayesian best-worst approach for assessing the critical success factors in sustainable lean manufacturing. Decision Analytics Journal, 6, 100157.

    ArticleĀ  Google ScholarĀ 

  43. Gul, M., Yucesan, M., & Ak, M. F. (2022). Control measure prioritization in Fineāˆ’ Kinney-based risk assessment: A Bayesian BWM-Fuzzy VIKOR combined approach in an oil station. Environmental Science and Pollution Research, 29(39), 59385ā€“59402.

    ArticleĀ  Google ScholarĀ 

  44. Gupta, H., Kharub, M., Shreshth, K., Kumar, A., Huisingh, D., & Kumar, A. (2023). Evaluation of strategies to manage risks in smart, sustainable agriā€logistics sector: A Bayesianā€based group decisionā€making approach. Business Strategy and the Environment

    Google ScholarĀ 

  45. Li, L., Wang, X., & Rezaei, J. (2020). A Bayesian best-worst method-based multicriteria competence analysis of crowdsourcing delivery personnel. Complexity, 2020, 1ā€“17.

    ArticleĀ  Google ScholarĀ 

  46. ErinƧ, S. (1953). Doğu Anadolu Coğrafyası: Ä°stanbul Ɯniversitesi Coğrafya EnstitĆ¼sĆ¼ Yayınları. Ä°stanbul.

    Google ScholarĀ 

  47. https://www.afad.gov.tr/afet-haritalari. Accessed 09.03.2023.

  48. Butler, D. R., & Walsh, S. J. (1990). Lithologic, structural, and topographic influences on snow-avalanche path location, Eastern Glacier National Park, Montana. Annals pf the Association of American Geographers, 80(3), 362ā€“378. https://doi.org/10.1111/j.1467-8306.1990.tb00302

    ArticleĀ  Google ScholarĀ 

  49. Gƶl, C. (2005). Ć‡Ä±ÄŸ Olgusu ve Ormancılık. SĆ¼leyman Demirel Ɯniversitesi Orman FakĆ¼ltesi Dergisi, 1, 49ā€“63.

    Google ScholarĀ 

  50. Mutlu, S., Cindioğlu, Ä°., Kul, A. Ɩ., & SelƧuk, A. S. (2022). Coğrafi Bilgi Sistemi (CBS) ve Parametre Puanlama Yƶntemi Ä°le HakkĆ¢ri Ä°li Ć‡Ä±ÄŸ Tehlike Haritasının Oluşturulması. TĆ¼rkiye Coğrafi Bilgi Sistemleri Dergisi, 4(2), 71ā€“78.

    Google ScholarĀ 

  51. Benedikt, J. (2002). Risk assessment of avalanches. A fuzzy GIS application. In Proceedings of 5th International FLINS Conference, pp. 395ā€“402.

    Google ScholarĀ 

  52. Yılmaz, B. (2016). Application of GIS-based fuzzy logic and analytical hierarchy process (AHP) to snow avalanche susceptibility mapping, North San Juan, Colorado. https://doi.org/10.1016/j.ecolind.2020.106591

  53. Kadıoğlu, M. (2008). Sel, Heyelan ve Ć‡Ä±ÄŸ iƧin Risk Yƶnetimi. Kadıoğlu, M. ve Ɩzdamar, E., (Ed.), Afet Zararlarını Azaltmanın Temel Ä°lkeleri. (s. 251276), Ankara: JICA TĆ¼rkiye Ofisi Yayınları.

    Google ScholarĀ 

  54. Choubin, B., Borji M., Mosavi, A., Sajedi-Hosseini, F., Singh, P, V. & Shamshirband, S. (2019). Snow avalanche hazard prediction using machine learning methods. Journal of Hydrology, 577. https://doi.org/10.1016/j.jhydrol.2019.123929

  55. Ak, M. F., Yucesan, M., & Gul, M. (2022). Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach. Stochastic Environmental Research and Risk Assessment, 1ā€“14.

    Google ScholarĀ 

  56. Alkan, R., Yucesan, M., & Gul, M. (2022). A multi-attribute decision-making to sustainable construction material selection: A Bayesian BWM-SAW hybrid model in advances in best-worst method. In Proceedings of the Second International Workshop on Best-Worst Method (BWM2021) (pp. 67ā€“78). Springer International Publishing.

    Google ScholarĀ 

  57. Huang, C. N., Liou, J. J., Lo, H. W., & Chang, F. J. (2021). Building an assessment model for measuring airport resilience. Journal of Air Transport Management, 95, 102101.

    ArticleĀ  Google ScholarĀ 

  58. Li, Q., Rezaei, J., Tavasszy, L., Wiegmans, B., Guo, J., Tang, Y., & Peng, Q. (2020). Customersā€™ preferences for freight service attributes of China railway express. Transportation Research Part A: Policy and Practice, 142, 225ā€“236.

    ArticleĀ  Google ScholarĀ 

  59. Lo, H. W., Erdogan, M., Yucesan, M., & Gul, M. (2023). Emergency department preparedness assessment for outbreaks by a combined Bayesian BWMā€“RIM Model. In Multi-criteria decision analysis (pp. 169ā€“190). CRC Press.

    Google ScholarĀ 

  60. Saner, H. S., Yucesan, M., & Gul, M. (2022). A Bayesian BWM and VIKOR-based model for assessing hospital preparedness in the face of disasters. Natural Hazards, 1ā€“33.

    Google ScholarĀ 

  61. Yalcin Kavus, B., Ayyildiz, E., Gulum Tas, P., & Taskin, A. (2022). A hybrid Bayesian BWM and Pythagorean fuzzy WASPAS-based decision-making framework for parcel locker location selection problem. Environmental Science and Pollution Research, 1ā€“18.

    Google ScholarĀ 

  62. Yanilmaz, S., Baskak, D., Yucesan, M., & Gul, M. (2021). Extension of FEMA and SMUG models with Bayesian best-worst method for disaster risk reduction. International Journal of Disaster Risk Reduction, 66, 102631.

    ArticleĀ  Google ScholarĀ 

  63. Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175.

    ArticleĀ  Google ScholarĀ 

  64. https://bestworstmethod.com/software/. Accessed 09.03.2023.

  65. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-weighted-sum-works.htm. Accessed 13.06.2023.

  66. https://www.trthaber.com/haber/guncel/tunceli-erzincan-karayoluna-cig-dustu-660282.html. Accessed 09.03.2023.

  67. GĆ¼rer, Ä°., TunƧel, H. (1994). TĆ¼rkiyeā€™de Ć‡Ä±ÄŸ Sorunu ve BugĆ¼nkĆ¼ Durumu. TĆ¼rkiye Coğrafyası Araştırma ve Uygulama Merkezi II. Sempozyumu. Ankara Ɯniversitesi, Ankara

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekeriya Konurhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Konurhan, Z., YĆ¼cesan, M., Gul, M. (2023). Avalanche Risk Analysis by a Combined Geographic Information System and Bayesian Best-Worst Method. In: Rezaei, J., Brunelli, M., Mohammadi, M. (eds) Advances in Best-Worst Method. BWM 2023. Lecture Notes in Operations Research. Springer, Cham. https://doi.org/10.1007/978-3-031-40328-6_11

Download citation

Publish with us

Policies and ethics