Skip to main content

Influence of Myocardial Infarction on QRS Properties: A Simulation Study

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

The interplay between structural and electrical changes in the heart after myocardial infarction (MI) plays a key role in the initiation and maintenance of arrhythmia. The anatomical and electrophysiological properties of scar, border zone, and normal myocardium modify the electrocardiographic morphology, which is routinely analysed in clinical settings. However, the influence of various MI properties on the QRS is not intuitively predictable. In this work, we have systematically investigated the effects of 17 post-MI scenarios, varying the location, size, transmural extent, and conductive level of scarring and border zone area, on the forward-calculated QRS. Additionally, we have compared the contributions of different QRS score criteria for quantifying post-MI pathophysiology. The propagation of electrical activity in the ventricles is simulated via a Eikonal model on a unified coordinate system. The analysis has been performed on 49 subjects, and the results imply that the QRS is capable of identifying MI, suggesting the feasibility of inversely reconstructing infarct regions from QRS. There exist sensitivity variations of different QRS criteria for identifying 17 MI scenarios, which is informative for solving the inverse problem.

L. Li and J. Camps—Two authors contribute equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arevalo, H.J., et al.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7(1), 11437 (2016)

    Article  MathSciNet  Google Scholar 

  2. Banerjee, A., et al.: A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices. Phil. Trans. R. Soc. A 379(2212), 20200257 (2021)

    Article  Google Scholar 

  3. Bycroft, C., et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)

    Article  Google Scholar 

  4. Camps, J., et al.: Inference of ventricular activation properties from non-invasive electrocardiography. Med. Image Anal. 73, 102143 (2021)

    Google Scholar 

  5. Cardone-Noott, L., Bueno-Orovio, A., Mincholé, A., Zemzemi, N., Rodriguez, B.: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. EP Eur. 18(suppl_4), iv4–iv15 (2016)

    Google Scholar 

  6. Cupa, J., et al.: Diagnostic and prognostic value of QRS duration and QTc interval in patients with suspected myocardial infarction. Cardiol. J. 25(5), 601–610 (2018)

    Article  Google Scholar 

  7. Das, M.K., Khan, B., Jacob, S., Kumar, A., Mahenthiran, J.: Significance of a fragmented QRS complex versus a Q wave in patients with coronary artery disease. Circulation 113(21), 2495–2501 (2006)

    Article  Google Scholar 

  8. De Bakker, J., et al.: Slow conduction in the infarcted human heart. ‘Zigzag’ course of activation. Circulation 88(3), 915–926 (1993)

    Article  Google Scholar 

  9. Delewi, R., et al.: Pathological Q waves in myocardial infarction in patients treated by primary PCI. JACC Cardiovasc. Imaging 6(3), 324–331 (2013)

    Article  Google Scholar 

  10. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: a model study. Circ. Res. 90(8), 889–896 (2002)

    Article  Google Scholar 

  11. Hanna, E.B., Glancy, D.L.: ST-segment depression and T-wave inversion: classification, differential diagnosis, and caveats. Clevel. Clin. J. Med. 78(6), 404 (2011)

    Article  Google Scholar 

  12. John, R.M., et al.: Ventricular arrhythmias and sudden cardiac death. Lancet 380(9852), 1520–1529 (2012)

    Article  Google Scholar 

  13. Kurisu, S., et al.: Poor R-wave progression and myocardial infarct size after anterior myocardial infarction in the coronary intervention era. IJC Heart Vasculature 7, 106–109 (2015)

    Article  Google Scholar 

  14. Lang, R.M., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J.-Cardiovasc. Imaging 16(3), 233–271 (2015)

    Article  Google Scholar 

  15. Li, L., Camps, J., Banerjee, A., Beetz, M., Rodriguez, B., Grau, V.: Deep computational model for the inference of ventricular activation properties. In: Camara, C., et al. (eds.) STACOM 2022. LNCS, vol. 13593, pp. 369–380. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23443-9_34

    Chapter  Google Scholar 

  16. Liu, P., Wu, J., Wang, L., Han, D., Sun, C., Sun, J.: The prevalence of fragmented QRS and its relationship with left ventricular systolic function in chronic kidney disease. J. Int. Med. Res. 48(4), 0300060519890792 (2020)

    Article  Google Scholar 

  17. MacKenzie, R.: Poor R-wave progression. J. Insur. Med. 37(1), 58–62 (2005)

    Google Scholar 

  18. Martinez-Navarro, H., Mincholé, A., Bueno-Orovio, A., Rodriguez, B.: High arrhythmic risk in antero-septal acute myocardial ischemia is explained by increased transmural reentry occurrence. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  19. Mincholé, A., Zacur, E., Ariga, R., Grau, V., Rodriguez, B.: MRI-based computational torso/biventricular multiscale models to investigate the impact of anatomical variability on the ECG QRS complex. Front. Physiol. 10, 1103 (2019)

    Article  Google Scholar 

  20. Mittal, S., Srivastava, P.: Differentiation of poor R wave progression of old anteroseptal myocardial infarction from that due to emphysema. Int. J. Cardiol. 13(1), 92–94 (1986)

    Article  Google Scholar 

  21. Myerburg, R.J., Gelband, H., Nilsson, K., Castellanos, A., Morales, A.R., Bassett, A.L.: The role of canine superficial ventricular muscle fibers in endocardial impulse distribution. Circ. Res. 42(1), 27–35 (1978)

    Article  Google Scholar 

  22. Neic, A., et al.: Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J. Comput. Phys. 346, 191–211 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nikus, K., Birnbaum, Y., Eskola, M., Sclarovsky, S., Zhong-Qun, Z., Pahlm, O.: Updated electrocardiographic classification of acute coronary syndromes. Curr. Cardiol. Rev. 10(3), 229–236 (2014)

    Article  Google Scholar 

  24. Que, W., Han, C., Zhao, X., Shi, L.: An ECG generative model of myocardial infarction. Comput. Methods Programs Biomed. 225, 107062 (2022)

    Google Scholar 

  25. Schuler, S., Pilia, N., Potyagaylo, D., Loewe, A.: Cobiveco: Consistent biventricular coordinates for precise and intuitive description of position in the heart-with matlab implementation. Med. Image Anal. 74, 102247 (2021)

    Google Scholar 

  26. Smith, H.J., Banerjee, A., Choudhury, R.P., Grau, V.: Automated torso contour extraction from clinical cardiac MR slices for 3D torso reconstruction. In: 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3809–3813. IEEE (2022)

    Google Scholar 

  27. Strauss, D.G., Selvester, R.H.: The QRS complex-a biomarker that “images’’ the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. J. Electrocardiol. 42(1), 85 (2009)

    Article  Google Scholar 

  28. Strauss, D.G., et al.: ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circul. Arrhythmia Electrophysiol. 1(5), 327–336 (2008)

    Article  Google Scholar 

  29. Taggart, P., Sutton, P.M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., Kallis, P.: Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell. Cardiol. 32(4), 621–630 (2000)

    Article  Google Scholar 

  30. Thygesen, K., Alpert, J.S., Jaffe, A.S., Chaitman, B.R., Bax, J.J., Morrow, D.A., White, H.D.: Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40(3), 237–269 (2019)

    Article  Google Scholar 

  31. Wallman, M., Smith, N.P., Rodriguez, B.: A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times. IEEE Trans. Biomed. Eng. 59(6), 1739–1748 (2012)

    Article  Google Scholar 

  32. Wang, Z.J., Santiago, A., et al.: Human biventricular electromechanical simulations on the progression of electrocardiographic and mechanical abnormalities in post-myocardial infarction. EP Eur. 23, i143–i152 (2021)

    Google Scholar 

  33. Zimetbaum, P.J., Josephson, M.E.: Use of the electrocardiogram in acute myocardial infarction. N. Engl. J. Med. 348(10), 933–940 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

This research has been conducted using the UK Biobank Resource under Application Number ‘40161’. The authors express no conflict of interest. This work was funded by the CompBioMed 2 Centre of Excellence in Computational Biomedicine (European Commission Horizon 2020 research and innovation programme, grant agreement No. 823712). L. Li was partially supported by the SJTU 2021 Outstanding Doctoral Graduate Development Scholarship. A. Banerjee is a Royal Society University Research Fellow and is supported by the Royal Society Grant No. . The work of A. Banerjee and V. Grau was partially supported by the British Heart Foundation (BHF) Project under Grant PG/20/21/35082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Camps, J., Wang, Z., Banerjee, A., Rodriguez, B., Grau, V. (2023). Influence of Myocardial Infarction on QRS Properties: A Simulation Study. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics