Skip to main content

Abstract

Hydrogen embrittlement is one of the main causes of catastrophic failure of structural components made of carbon steel. Among the underlying physical mechanisms associated with this complex phenomenon, hydrogen diffusion as an atomic interstitial in the body - centered cubic (BCC) lattice of pure iron plays a fundamental role. The main goal of this study is to characterize the fundamental events that controls the diffusion of hydrogen: the atomic jumps among stable or metastable lattice points (tetrahedral and octahedral sites). To this end, the best technique available is density functional theory (DFT), which is able to determine from first principles the atomic configuration and the energy landscape associated to the presence of hydrogen in the lattice. In this work, the strategies employed so far to obtain the jump parameters are reviewed, and a recently developed technique (Linear synchronous transient and Quadratic synchronous transient method) has been applied in order to improve the accuracy of previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, W.H., Thomson, W.: II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. R. Soc. Lond. 23, 168–179 (1875). Dec

    Article  Google Scholar 

  2. Reynolds, O.: On the effect of acid on the interior of iron wire. J. Franklin Inst. 99, 70–72 (1875). Jan

    Article  Google Scholar 

  3. Thomas, R.L.S., Li, D., Gangloff, R.P., Scully, J.R.: Trap-governed hydrogen diffusivity and uptake capacity in ultrahigh-strength AERMET 100 steel. Metall. and Mater. Trans. A. 33, 1991–2004 (2002). Jul

    Article  Google Scholar 

  4. Lynch, S.: Discussion of some recent literature on hydrogen-embrittlement mechanisms: Addressing common misunderstandings. Corros. Rev. 37, 377–395 (2019). Oct

    Article  Google Scholar 

  5. Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech. A. Solids 20, 857–872 (2001). Nov

    Article  MATH  Google Scholar 

  6. Song, Curtin, W.A.: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nature Materials 12, 145–151 (Feb 2013)

    Google Scholar 

  7. Martínez-Pañeda, E., Golahmar, A., Niordson, C.F.: A phase field formulation for hydrogen assisted cracking. Comput. Methods Appl. Mech. Eng. 342, 742–761 (2018). Dec

    Article  MathSciNet  MATH  Google Scholar 

  8. Motta, A.T., Chen, L.Q.: Hydride formation in zirconium alloys. Jom 64(12), 1403–1408 (2012)

    Article  Google Scholar 

  9. Billone, M.C., Burtseva, T.A., Einziger, R.E.: Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions. J. Nucl. Mater. 433(1–3), 431–448 (2013)

    Article  Google Scholar 

  10. Pfeil: The effect of occluded hydrogen on the tensile strength of iron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 112, pp. 182–195 (Aug 1926)

    Google Scholar 

  11. Oriani, R.A., Josephic, P.H.: Hydrogen-enhanced nucleation of microcavities in aisi 1045 steel. Scripta Metallurgica 13, 469–471 (Jun 1979)

    Google Scholar 

  12. Gangloff, R.P.: Critical issues in hydrogen assisted cracking of structural alloys. In: Environment-Induced Cracking of Materials, pp. 141–165. Elsevier (Jan 2008)

    Google Scholar 

  13. Beachem, C.D.: A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metallurgical Transactions 3(2), 441–455 (1972). https://doi.org/10.1007/BF02642048

    Article  Google Scholar 

  14. Birnbaum, H.K., Sofronis, P.: Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191–202 (1994). Mar

    Article  Google Scholar 

  15. Ogosi, E., Asim, U.B., Siddiq, A., Kartal, M.E.: Hydrogen effect on plastic deformation and fracture in austenitic stainless steel (Jun 2020)

    Google Scholar 

  16. Kirchheim, R.: On the solute-defect interaction in the framework of a defactant concept. Int. J. Mater. Res. 100, 483–487 (2009). Apr

    Article  Google Scholar 

  17. Wang, R.: Effects of hydrogen on the fracture toughness of a X70 pipeline steel. Corros. Sci. 51, 2803–2810 (2009). Dec

    Article  Google Scholar 

  18. Djukic, M.B., Sijacki Zeravcic, V., Bakic, G.M., Sedmak, A., Rajicic, B.: Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis 58, 485–498 (Dec 2015)

    Google Scholar 

  19. Novak, P., Yuan, R., Somerday, B.P., Sofronis, P., Ritchie, R.O.: A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. J. Mech. Phys. Solids 58, 206–226 (2010). Feb

    Article  Google Scholar 

  20. Nagumo, M.: Fundamentals of hydrogen embrittlement. Springer Singapore (2016)

    Google Scholar 

  21. Hammersley. J., Handscomb, D.C.: Monte carlo methods. Flecher & Son Ltd Norwick (1964)

    Google Scholar 

  22. Ramasubramaniam, A., Itakura, M., Ortiz, M., Carter, E.A.: Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. J. Mater. Res. 23(10), 2757–2773 (2008). https://doi.org/10.1557/JMR.2008.0340

    Article  Google Scholar 

  23. Du, Y.A., Rogal, J., Drautz, R.: Diffusion of hydrogen within idealized grains of bcc Fe: A kinetic Monte Carlo study. Physical Review B - Condensed Matter and Materials Physics 86, 174110 (2012). Nov

    Article  Google Scholar 

  24. Kehr, K.W.: Theory of the diffusion of hydrogen in metals. In: Alefeld, G., Völkl, J. (eds) Hydrogen in Metals I. Topics in Applied Physics, vol 28. Springer, Berlin, Heidelberg (1978). https://doi.org/10.1007/3540087052_47

  25. de Andres, P.L., Sanchez, J., Ridruejo, A.: Hydrogen in α-iron: role of phonons in the diffusion of interstitials at high temperature. Sci Rep 9, 12127 (2019). https://doi.org/10.1038/s41598-019-48490-w

    Article  Google Scholar 

  26. Nityananda, R., Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Resonance 22(8), 809–811 (2017). https://doi.org/10.1007/s12045-017-0529-3

    Article  Google Scholar 

  27. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  28. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  29. Francis, G.P., Payne, M.C.: Finite basis set corrections to total energy pseudopotential calculations. J. Phys. Condes. Matter 2, 4395–4404 (1990)

    Article  Google Scholar 

  30. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations – molecular-dynamics and conjgate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  Google Scholar 

  31. Giannozzi, P. et al.: J. Phys.: Condens. Matter 29, 465901 (2017)

    Google Scholar 

  32. Byrd, R., Nocedal, J., Yuan, Y.: Global convergence of a class of quasi-newton methods on convex problems. SIAM J. Numer. Anal. 24(5), 1171–1190 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Clark, S.J., et al.: First principles methods using CASTEP. Zeitschrift fur Kristallographie 220, 567–570 (2005). May

    Google Scholar 

  34. Mills, G., Jonsson, H., Schenter, G.K.: Surf. Sci. 324, 305 (1995)

    Google Scholar 

  35. Chem, J.: Phys. 113, 9901 (2000). https://doi.org/10.1063/1.1329672

    Article  Google Scholar 

  36. Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., Andzelm, J.: A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258 (2003)

    Article  Google Scholar 

  37. Ernzerhof, M., Perdew, J.P.: Generalized gradient approximation to the angle and system-averaged exchange hole. J. Chem. Phys. 109, 3313 (1998). Nov

    Article  Google Scholar 

  38. Louie, S.G., Froyen, S., Cohen, M.L.: Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26, 1738–1742 (1982). Aug

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Ridruejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Álvarez, G., Ridruejo, A., Sánchez, J. (2023). Quantum Mechanically Informed Kinetic Monte Carlo Models for Hydrogen Diffusion in BCC-Iron. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics