Skip to main content

Three Days of Chronic Intermittent Hypoxia Induce β1-Adrenoceptor Dependent Increases in Left Ventricular Contractility

  • Conference paper
  • First Online:
Arterial Chemoreceptors (ISAC XXI 2022)

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1427))

Included in the following conference series:

Abstract

Sleep apnea is characterized by bouts of chronic intermittent hypoxia (CIH) that elicit sympathetic hyperactivity resulting in residual hypertension. We previously demonstrated that exposure to CIH increases cardiac output and sought to determine if enhanced cardiac contractility manifests prior to hypertension.

Male Wistar rats were exposed to cyclical bouts of hypoxia (FiO2 = 0.05 nadir; 90 s) and normoxia (FiO2 = 0.21; 210 s) 8 h/day for 3 days (CIH; n = 6). Control animals (n = 7) were exposed to room air. Data are presented as mean ± SD and were analyzed using unpaired Student t-tests.

Three-day exposure to CIH did not elicit changes in heart rate and blood pressure (p > 0.05). However, baseline left ventricular contractility (dP/dtMAX) was significantly increased in CIH-exposed animals compared with control (15300 ± 2002 vs. 12320 ± 2725 mmHg/s; p = 0.025), despite no difference in catecholamine concentrations. Acute β1-adrenoceptor inhibition reduced contractility in CIH-exposed animals (−7604 ± 1298 vs. −4747 ± 2080 mmHg/s; p = 0.014), to levels equivalent to control, while preserving cardiovascular parameters. Sympathetic ganglion blockade (hexamethonium 25 mg/kg; i.v.) produced equivalent cardiovascular responses suggesting similar global sympathetic activity between groups. Interestingly, gene expression of the β1-adrenoceptor pathway in cardiac tissue was unchanged.

Our results suggest that CIH increases cardiac contractility via β1-adrenoceptor dependent mechanisms prior to development of global sympathetic hyperactivity suggesting that positive cardiac inotropy contributes to the development of hypertension in CIH-exposed rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Phillipson EA (1997) Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest 99(1):106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrier O, Walker JR, Guyton AC (1964) Role of oxygen in autoregulation of blood flow in isolated vessels. Am J Physiol 206(5):951–954 [Internet]. Available from: www.physiology.org/journal/ajplegacy

  • Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM (2005) Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med 172(7):915–920

    Article  PubMed  Google Scholar 

  • Cheong HI, Asosingh K, Stephens OR, Queisser KA, Xu W, Willard B et al (2016) Hypoxia sensing through β-adrenergic receptors. Ref Inf JCI Insight 1(21):90240

    Google Scholar 

  • de Burgh DM, Angell-James JE, Elsner R (1979) Role of carotid-body chemoreceptors and their reflex interactions in bradychardia and cardiac arrest. Lancet 313(8119):764–767

    Article  Google Scholar 

  • Flemons WW, Buysse D, Redline S, Oack A, Strohl K, Wheatley J et al (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22(5):667–689

    Article  Google Scholar 

  • Gleadle JM, Ratcliffe PJ (1997) Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 89(2):503–509

    Article  CAS  PubMed  Google Scholar 

  • Guilleminault C, Motta J, Mihm F, Melvin K (1986) Obstructive sleep apnea and cardiac index. Chest 89:331–334

    Google Scholar 

  • Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH et al (2004) Cardiac myocyte-specific HIF-1α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. The FASEB Journal [Internet]. Available from: https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.04-1510fje

  • Iturriaga R, Rey S, del Rio R, Moya EA, Alcayaga J (2009) Arterial chemoreceptors. In: Gonzalez C, Nurse CA, Peers C (eds) Adv Exp Med Biol 648:329–335 [Internet]. Available from: http://link.springer.com/10.1007/978-90-481-2259-2

  • Lucking EF, O’Halloran KD, Jones JFX (2014) Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension. Exp Physiol 99(10):1312–1324

    Article  CAS  PubMed  Google Scholar 

  • Mancia G, Grassi G, Bertinieri G, Ferrari A, Zanchetti A (1984) Arterial baroreceptor control of blood pressure in man. J Auton Nerv Syst 11:115–124

    Article  CAS  PubMed  Google Scholar 

  • Marcus NJ, Olson EB, Bird CE, Philippi NR, Morgan BJ (2009) Time-dependent adaptation in the hemodynamic response to hypoxia. Respir Physiol Neurobiol 165(1):90–96

    Article  PubMed  Google Scholar 

  • Peng YJ, Su X, Wang B, Matthews T, Nanduri J, Prabhakar NR (2021) Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol 126(6):2054–2067

    Article  Google Scholar 

  • Semenza GL, Prabhakar NR (2018) The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol 596(15):2977–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Javier Nieto F et al (2001) Sleep-disordered breathing and cardiovascular disease cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 163:19–25 [Internet]. Available from: www.atsjournals.org

  • van Beek JHGM (1998) Effects of hypoxia and hypercapnia on cardiac contractility and energetics. Physiol Pharmacol Cardio-Resp Control:19–24

    Google Scholar 

  • Zoccal DB, Bonagamba LGH, Antunes-Rodrigues J, Machado BH (2007) Plasma corticosterone levels is elevated in rats submitted to chronic intermittent hypoxia. Auton Neurosci 134(1–2):115–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken D. O’Halloran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marullo, A.L., Lucking, E.F., Pender, D., Dhaliwal, P., O’Halloran, K.D. (2023). Three Days of Chronic Intermittent Hypoxia Induce β1-Adrenoceptor Dependent Increases in Left Ventricular Contractility. In: Conde, S.V., Iturriaga, R., del Rio, R., Gauda, E., Monteiro, E.C. (eds) Arterial Chemoreceptors. ISAC XXI 2022. Advances in Experimental Medicine and Biology, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-031-32371-3_5

Download citation

Publish with us

Policies and ethics