Skip to main content

Generalized Indefinite Strings with Purely Discrete Spectrum

  • Chapter
  • First Online:
From Complex Analysis to Operator Theory: A Panorama

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 291))

  • 267 Accesses

Abstract

We establish criteria for the spectrum of a generalized indefinite string to be purely discrete and to satisfy Schatten–von Neumann properties. The results can be applied to the isospectral problem associated with the conservative Camassa–Holm flow and to Schrödinger operators with \(\delta '\)-interactions.

Dedicated to the memory of Sergey Nikolaevich Naboko (1950–2020)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and below, \(\sqrt {\mathrm {K}_\upsilon }\) always denotes the positive square root of the positive operator \(\mathrm {K}_\upsilon \).

References

  1. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd edn. (AMS Chelsea Publishing, Providence, RI, 2005)

    MATH  Google Scholar 

  2. A.B. Aleksandrov, S. Janson, V.V. Peller, R. Rochberg, An interesting class of operators with unusual Schatten–von Neumann behavior, in Function Spaces, Interpolation Theory and Related Topics (Lund, 2000) (de Gruyter, Berlin, 2002), pp. 61–149

    MATH  Google Scholar 

  3. C. Bennewitz, B.M. Brown, R. Weikard, Inverse spectral and scattering theory for the half-line left-definite Sturm–Liouville problem. SIAM J. Math. Anal. 40(5), 2105–2131 (2008/09)

    Article  MathSciNet  MATH  Google Scholar 

  4. V.I. Bogachev, Measure Theory, vol. I, II (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  5. R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. R.S. Chisholm, W.N. Everitt, On bounded integral operators in the space of integrable-square functions. Proc. Roy. Soc. Edinburgh Sect. A 69, 199–204 (1970/71)

    MathSciNet  MATH  Google Scholar 

  7. H. Dym, H.P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem. Probability and Mathematical Statistics, vol. 31 (Academic Press, New York-London, 1976)

    Google Scholar 

  8. J. Eckhardt, Direct and inverse spectral theory of singular left-definite Sturm–Liouville operators. J. Differ. Equ. 253(2), 604–634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Eckhardt, The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data. Arch. Ration. Mech. Anal. 224(1), 21–52 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Eckhardt, A. Kostenko, An isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation. Commun. Math. Phys. 329(3), 893–918 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Eckhardt, A. Kostenko, Quadratic operator pencils associated with the conservative Camassa–Holm flow. Bull. Soc. Math. France 145(1), 47–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Eckhardt, A. Kostenko, The inverse spectral problem for indefinite strings. Invent. Math. 204(3), 939–977 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Eckhardt, A. Kostenko, On the absolutely continuous spectrum of generalized indefinite strings. Ann. Henri Poincaré 22(11), 3529–3564 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Eckhardt, A. Kostenko, M. Malamud, G. Teschl, One-dimensional Schrödinger operators with \(\delta '\)-interactions on Cantor-type sets. J. Differential Equations 257, 415–449 (2014)

    Google Scholar 

  15. J. Eckhardt, G. Teschl, Sturm–Liouville operators with measure-valued coefficients. J. Anal. Math. 120(1), 151–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.R. Halmos, V.S. Sunder, Bounded Integral Operators on\(L_2\)spaces (Springer, Berlin, 1978)

    Google Scholar 

  17. E. Hewitt, K. Stromberg, Real and Abstract Analysis (Springer, New York, 1965)

    Book  MATH  Google Scholar 

  18. I.S. Kac, Spectral theory of a string, Ukrainian Math. J. 46(3), 159–182 (1994)

    Article  MathSciNet  Google Scholar 

  19. I.S. Kac, M.G. Krein, Criteria for the discreteness of the spectrum of a singular string, (Russian). Izv. Vysš. Učebn. Zaved. Matematika 2(3), 136–153 (1958)

    MATH  Google Scholar 

  20. I.S. Kac, M.G. Krein, On the spectral functions of the string. Am. Math. Soc. Transl. Ser. 2 103, 19–102 (1974)

    MATH  Google Scholar 

  21. A. Kostenko, M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set. J. Differential Equations 249(2), 253–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kostenko, M. Malamud, 1-D Schrödinger operators with local point interactions: a review, in Spectral Analysis, Integrable Systems, and Ordinary Differential Equations, ed. by H. Holden, et al. Proceedings of Symposia in Pure Mathematics, vol. 87 (American Mathematical Society, Providence, 2013), pp. 235–262

    Google Scholar 

  23. A. Kostenko, M. Malamud, Spectral theory of semibounded Schrödinger operators with \(\delta '\)-interactions. Ann. Henri Poincaré 15(3), 501–541 (2014)

    Google Scholar 

  24. S. Kotani, S. Watanabe, Kreı̆n’s spectral theory of strings and generalized diffusion processes, in Functional analysis in Markov processes (Katata/Kyoto, 1981). Lecture Notes in Mathematics, vol. 923 (Springer, Berlin, 1982), pp. 235–259

    Google Scholar 

  25. M.G. Kreı̆n, H. Langer, On some extension problems which are closely connected with the theory of Hermitian operators in a space \(\Pi _\kappa \). III. Indefinite analogues of the Hamburger and Stieltjes moment problems. Beiträge Anal. 14, 25–40 (1979); 15, 27–45 (1980)

    Google Scholar 

  26. H. Langer, Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter. Ann. Acad. Sci. Fenn. Ser. A I Math. 2, 269–301 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.G. Maz’ja, Sobolev Spaces (Springer, Berlin, 1985)

    Book  Google Scholar 

  28. B. Muckenhoupt, Hardy’s inequality with weights. Studia Math. 44, 31–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Remling, K. Scarbrough, The essential spectrum of canonical systems. J. Approx. Theory 254, 105395, 11 pp. (2020)

    Google Scholar 

  30. R. Romanov, H. Woracek, Canonical systems with discrete spectrum. J. Funct. Anal. 278(4), 108318, 44 pp. (2020)

    Google Scholar 

  31. I.A. Sheipak, Asymptotics of the spectrum of a differential operator with the weight generated by the Minkowski function. Math. Notes 97(2), 289–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Solomyak, E. Verbitsky, On a spectral problem related to self-similar measures. Bull. London Math. Soc. 27, 242–248 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. C.A. Stuart, The measure of non-compactness of some linear integral operators. Proc. Roy. Soc. Edinburgh Sect. A 71, 167–179 (1973)

    MathSciNet  MATH  Google Scholar 

  34. A.A. Vladimirov, I.A. Sheipak, Self-similar functions in \(L^2[0,1]\) and the Sturm–Liouville problem with singular indefinite weight. Sb. Math. 197(11), 1569–1586 (2006)

    Google Scholar 

  35. A.A. Vladimirov, I.A. Sheipak, Asymptotics of the eigenvalues of the Sturm–Liouville problem with discrete self-similar weight. (Russian) Mat. Zametki 88(5), 662–672 (2010); translation in: Math. Notes 88(5–6), 637–646 (2010)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Mark Malamud, Roman Romanov and Harald Woracek for useful discussions and hints with respect to the literature.

This research was supported by the Austrian Science Fund (FWF) under Grants No. P30715, I-4600 (A.K.) and by the Slovenian Research Agency (ARRS) under Grant No. N1-0137 (A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Kostenko .

Editor information

Editors and Affiliations

Appendices

Appendix A: On a Class of Integral Operators

Let \(\mathsf {q}\) be a function in \(L^2_{{\mathrm {loc}}}[0,\infty )\) and consider the integral operator \(\mathrm {J}\) in the Hilbert space \(L^2[0,\infty )\) defined by

$$\displaystyle \begin{aligned} {} \mathrm{J} f(x) = \int_0^\infty \mathsf{q}(\max(x,t))f(t)dt = \mathsf{q}(x)\int_0^x f(t)dt + \int_x^\infty \mathsf{q}(t)f(t)dt \end{aligned} $$
(A.1)

for functions \(f\in \dot {L}^2_{{\mathrm {c}}}[0,\infty )\). Since the subspace \(\dot {L}^2_{{\mathrm {c}}}[0,\infty )\) is dense in \(L^2[0,\infty )\), the operator \(\mathrm {J}\) is densely defined. The theorems in this appendix gather a number of results from [2] for these kinds of integral operators.

Theorem A.1

The following assertions hold true:

  1. (i)

    The operator\(\mathrm {J}\)is bounded if and only if there is a constant\(c\in {\mathbb C}\)such that

    $$\displaystyle \begin{aligned} {} \limsup_{x\rightarrow\infty}\, x\int_x^\infty |\mathsf{q}(t) - c|{}^2dt <\infty. \end{aligned} $$
    (A.2)

    In this case, the constant c is given by

    $$\displaystyle \begin{aligned} {} c = \lim_{x\rightarrow \infty} \frac{1}{x} \int_0^{x} \mathsf{q}(t)dt. \end{aligned} $$
    (A.3)
  2. (ii)

    The operator\(\mathrm {J}\)is compact if and only if there is a constant\(c\in {\mathbb C}\)such that

    $$\displaystyle \begin{aligned} {} \lim_{x\rightarrow \infty} x\int_x^\infty |\mathsf{q}(t) - c|{}^2dt =0. \end{aligned} $$
    (A.4)
  3. (iii)

    For each\(p>1\), the operator\(\mathrm {J}\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_p\)if and only if there is a constant\(c\in {\mathbb C}\)such that

    $$\displaystyle \begin{aligned} {} \int_0^\infty \biggl(x\int_x^\infty |\mathsf{q}(t) - c|{}^2dt\biggr)^{{p}/{2}} \frac{dx}{x} < \infty. \end{aligned} $$
    (A.5)
  4. (iv)

    If the operator\(\mathrm {J}\)belongs to the Hilbert–Schmidt class\(\mathfrak {S}_2\), then its Hilbert–Schmidt norm is given by

    $$\displaystyle \begin{aligned} {} \|\mathrm{J}\|{}^2_{\mathfrak{S}_2} = 2\int_0^\infty x |\mathsf{q}(x) - c|{}^2 dx, \end{aligned} $$
    (A.6)

    where the constant c is given by (A.3).

  5. (v)

    If the operator\(\mathrm {J}\)belongs to the trace class\(\mathfrak {S}_1\), then

    $$\displaystyle \begin{aligned} {} \int_0^\infty \biggl(x\int_x^\infty |\mathsf{q}(t) - c|{}^2dt\biggr)^{{1}/{2}} \frac{dx}{x} <\infty, \end{aligned} $$
    (A.7)

    the function\(\mathsf {q}-c\)is integrable and the trace of\(\mathrm {J}\)is given by

    $$\displaystyle \begin{aligned} {} \mathrm{tr}\,\mathrm{J} = \int_0^\infty (\mathsf{q}(x)-c) dx, \end{aligned} $$
    (A.8)

    where the constant c is given by (A.3).

Proof

Sufficiency of the conditions in (i), (ii), and (iii) follows readily from [2, Section 3] upon noticing that one has

$$\displaystyle \begin{aligned} \mathrm{J} f(x) = \int_0^\infty \mathsf{q}(\max(x,t)) f(t)dt = \int_0^\infty (\mathsf{q}(\max(x,t)) - c)f(t)dt \end{aligned}$$

for functions \(f \in \dot {L}^2_{{\mathrm {c}}}[0,\infty )\). In order to prove that the condition in (i) is also necessary, let us suppose that the operator \(\mathrm {J}\) is bounded. For every \(n\in {\mathbb N}\), we consider the function

$$\displaystyle \begin{aligned} f_n = {\mathbb{1}}_{[0,1)} - \frac{1}{n}{\mathbb{1}}_{[1,n+1)}, \end{aligned}$$

where \({\mathbb{1} }_I\) denotes the characteristic function of an interval \(I\subseteq [0,\infty )\). Clearly, the functions \(f_n\) belong to \(\dot {L}^2_{{\mathrm {c}}}[0,\infty )\) and converge to \({\mathbb{1} }_{[0,1)}\) in \(L^2[0,\infty )\) as \(n\rightarrow \infty \). Since the operator \(\mathrm {J}\) is bounded, this implies that the functions \(\mathrm {J} f_n\) converge in \(L^2[0,\infty )\). In view of the definition of \(\mathrm {J}\), we then find that

$$\displaystyle \begin{aligned} \mathrm{J} f_n(x) &=\begin{cases} x\mathsf{q}(x) + \int_x^1 \mathsf{q}(t)dt - \frac{1}{n}\int_1^{n+1}\mathsf{q}(t)dt, & x\in [0,1),\\[2mm] \mathsf{q}(x) - \frac{1}{n}\mathsf{q}(x)(x-1) - \frac{1}{n}\int_x^{n+1}\mathsf{q}(t)dt, & x\in [1,n+1),\\[2mm] 0, & x\in[n+1,\infty), \end{cases} \end{aligned} $$

for almost all \(x\in [0,\infty )\). From this we are able to infer that the limit

$$\displaystyle \begin{aligned} c := \lim_{n\rightarrow \infty} \frac{1}{n} \int_1^{n+1} \mathsf{q}(t)dt = \lim_{n\rightarrow \infty}\langle Q - \mathrm{J} f_n , {\mathbb{1}}_{[0,1)} \rangle _{L^2[0,\infty)} \end{aligned} $$

exists in \({\mathbb C}\), where the function Q in \(L^2[0,\infty )\) is defined by

$$\displaystyle \begin{aligned} Q(x) = {\mathbb{1}}_{[0,1)}(x)\biggl( x\mathsf{q}(x) + \int_x^1 \mathsf{q}(t)dt\biggr). \end{aligned} $$

Moreover, we see that for almost every \(x\in [0,\infty )\) one has

$$\displaystyle \begin{aligned} \lim_{n\rightarrow \infty} \mathrm{J} f_n(x) = \begin{cases} Q(x) - c, & x\in [0,1),\\ \mathsf{q}(x) - c, & x\in[1,\infty). \end{cases} \end{aligned}$$

Since, on the other side, it can be readily checked that one also has

$$\displaystyle \begin{aligned} \int_0^\infty (\mathsf{q}(\max(x,t)) - c){\mathbb{1}}_{[0,1)}(t)dt = \begin{cases} Q(x) - c, & x\in [0,1),\\ \mathsf{q}(x) - c, & x\in[1,\infty), \end{cases} \end{aligned}$$

we may conclude that the bounded extension of \(\mathrm {J}\) to \(L^2_{\mathrm {c}}[0,\infty )\) satisfies

$$\displaystyle \begin{aligned} \mathrm{J} {\mathbb{1}}_{[0,1)}(x) = \int_0^\infty (\mathsf{q}(\max(x,t)) - c){\mathbb{1}}_{[0,1)}(t)dt \end{aligned} $$

and is hence explicitly given by

$$\displaystyle \begin{aligned} \mathrm{J} f(x) = \int_0^\infty (\mathsf{q}(\max(x,t)) - c)f(t)dt \end{aligned} $$

for all functions \(f \in L^2_{{\mathrm {c}}}[0,\infty )\). It now remains to apply [2, Theorem 3.1] to deduce that the function \(\mathsf {q}\) satisfies (A.2) and the constant c is necessarily given by (A.3). If the operator \(\mathrm {J}\) is moreover compact, then [2, Theorem 3.2] yields (A.4) and if it belongs to \(\mathfrak {S}_p\) for some \(p>1\), then [2, Theorem 3.3] yields (A.5). This proves that the conditions in (ii) and (iii) are also necessary. Finally, the formula (A.6) for the Hilbert–Schmidt norm in (iv) follows from [2, Remark in Section 3] and the necessary condition (A.7) for the operator \(\mathrm {J}\) to belong to the trace class \(\mathfrak {S}_1\) as well as the formula (A.8) for the trace in (v) follow from [2, Theorem 6.2]. □

Remark A.2

Let us stress that boundedness and compactness criteria for the integral operator \(\mathrm {J}\) have been established before in [6] and [33], respectively.

In Theorem A.1(iii), the value \(p=1\) is a threshold since the condition (A.7) is only necessary for the operator \(\mathrm {J}\) to belong to the trace class \(\mathfrak {S}_1\); see [2, Section 6].

Theorem A.3

Let\(\chi \)be a non-negative Borel measure on\([0,\infty )\)and suppose that

$$\displaystyle \begin{aligned} \mathsf{q}(x) = \int_{[0,x)}d\chi \end{aligned} $$
(A.9)

for almost all\(x\in [0,\infty )\). The following assertions hold true:

  1. (i)

    The operator\(\mathrm {J}\)is bounded if and only if

    $$\displaystyle \begin{aligned} {} \limsup_{x\rightarrow\infty}\, x \int_{[x,\infty)}d\chi <\infty. \end{aligned} $$
    (A.10)
  2. (ii)

    The operator\(\mathrm {J}\)is compact if and only if

    $$\displaystyle \begin{aligned} {} \lim_{x\rightarrow \infty} x \int_{[x,\infty)}d\chi =0. \end{aligned} $$
    (A.11)
  3. (iii)

    For each\(p>{1}/{2}\), the operator\(\mathrm {J}\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_p\)if and only if

    $$\displaystyle \begin{aligned} {} \int_0^\infty \biggl(x\int_{[x,\infty)}d\chi\biggr)^p\frac{dx}{x} <\infty. \end{aligned} $$
    (A.12)
  4. (iv)

    If the operator\(\mathrm {J}\)belongs to the trace class\(\mathfrak {S}_1\), then its trace is given by

    $$\displaystyle \begin{aligned} \mathrm{tr}\,\mathrm{J} = -\int_{[0,\infty)} x\, d\chi(x). \end{aligned} $$
    (A.13)
  5. (v)

    If the operator\(\mathrm {J}\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_{{1}/{2}}\), then the measure\(\chi \)is singular with respect to the Lebesgue measure.

Proof

By means of the connection established in the proof of Theorem A.1, the claims in (i), (ii) and (iii) follow from [2, Theorem 4.6], upon also noting that

$$\displaystyle \begin{aligned} \lim_{x\rightarrow \infty}\frac{1}{x}\int_0^{x} \mathsf{q}(t)dt = \lim_{x\rightarrow \infty} \int_{[0,x)} \biggl(1-\frac{t}{x}\biggr) d\chi(t) = \int_{[0,\infty)} d\chi \end{aligned}$$

in this case. The claim in (iv) then follows from Theorem A.1(v) and the claim in (v) follows from [2, Corollary 8.12]. □

We also want to consider related operators on a finite interval. To this end, let L be a positive number and define the operator \(\mathrm {J}_L\) in the Hilbert space \(L^2[0,L)\) by

$$\displaystyle \begin{aligned} {} \mathrm{J}_L f(x) = \int_0^L \mathsf{q}_L(\min(x,t))f(t)dt = \int_0^x \mathsf{q}_L(t)f(t)dt + \mathsf{q}_L(x) \int_x^L f(t)dt \end{aligned} $$
(A.14)

for functions \(f\in L^2_{{\mathrm {c}}}[0,L)\), where \(\mathsf {q}_L\) is a function in \(L^2_{{\mathrm {loc}}}[0,L)\). As a Carleman integral operator, the operator \(\mathrm {J}_L\) is closable (see [16, Theorem 3.8] for example).

Theorem A.4

The following assertions hold true:

  1. (i)

    The operator\(\mathrm {J}_L\)is bounded if and only if

    $$\displaystyle \begin{aligned} \limsup_{x\rightarrow L}\, (L-x)\int_0^x |\mathsf{q}_L(t)|{}^2dt < \infty. \end{aligned} $$
    (A.15)
  2. (ii)

    The operator\(\mathrm {J}_L\)is compact if and only if

    $$\displaystyle \begin{aligned} \lim_{x\rightarrow L} (L-x)\int_0^x |\mathsf{q}_L(t)|{}^2dt = 0. \end{aligned} $$
    (A.16)
  3. (iii)

    For each\(p>1\), the operator\(\mathrm {J}_L\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_p\)if and only if

    $$\displaystyle \begin{aligned} \int_0^L \biggl((L-x)\int_0^x |\mathsf{q}_L(t)|{}^2dt\biggr)^{{p}/{2}}\frac{dx}{L-x} < \infty. \end{aligned} $$
    (A.17)
  4. (iv)

    If the operator\(\mathrm {J}_L\)belongs to the Hilbert–Schmidt class\(\mathfrak {S}_2\), then its Hilbert–Schmidt norm is given by

    $$\displaystyle \begin{aligned} \|\mathrm{J}_L\|{}^2_{\mathfrak{S}_2} = 2 \int_0^L (L-x) |\mathsf{q}_L(x)|{}^2 dx. \end{aligned} $$
    (A.18)
  5. (v)

    If the operator\(\mathrm {J}_L\)belongs to the trace class\(\mathfrak {S}_1\), then

    $$\displaystyle \begin{aligned} {} \int_0^L \biggl((L-x)\int_0^x |\mathsf{q}_L(t)|{}^2dt\biggr)^{{1}/{2}}\frac{dx}{L-x} < \infty, \end{aligned} $$
    (A.19)

    the function\(\mathsf {q}_L\)is integrable and the trace of\(\mathrm {J}_L\)is given by

    $$\displaystyle \begin{aligned} {} \mathrm{tr}\,\mathrm{J}_L = \int_0^L \mathsf{q}_L(x)dx. \end{aligned} $$
    (A.20)

Proof

We first observe that for functions \(f\in L^2_{{\mathrm {c}}}[0,L)\) one has

$$\displaystyle \begin{aligned} \mathrm{J}_L f(L-x) & = \int_0^L \mathsf{q}_L(\min(L-x,t))f(t)dt \\ &= \int_0^L \mathsf{q}_L(\min(L-x,L-t))f(L-t)dt \\ &= \int_0^L \mathsf{q}_L(L - \max(x,t))f(L-t)dt \end{aligned} $$

for almost all \(x\in (0,L)\). Taking into account that the map \(f \mapsto f(L-\,\cdot )\) is unitary on \(L^2[0,L)\), the claims in (i), (ii), and (iii) follow readily from the corresponding results in [2, Section 3] with the function \(\varphi \) in \(L^2_{{\mathrm {loc}}}(0,\infty )\) given by

$$\displaystyle \begin{aligned} \varphi(x)= \begin{cases} \mathsf{q}_L(L-x), & x\in (0,L), \\ 0, & x\in[L,\infty). \end{cases} \end{aligned}$$

The claims in (iv) and (v) then follow from [2, Remark in Section 3] and [2, Theorem 6.2], respectively. □

The value \(p=1\) is again a threshold in Theorem A.4(iii) because the condition (A.19) is only necessary for the operator \(\mathrm {J}_L\) to belong to the trace class.

Theorem A.5

Let\(\chi \)be a non-negative Borel measure on\([0,L)\)and suppose that

$$\displaystyle \begin{aligned} \mathsf{q}_L(x) = \int_{[0,x)}d\chi \end{aligned} $$
(A.21)

for almost all\(x\in [0,L)\). The following assertions hold true:

  1. (i)

    The operator\(\mathrm {J}_L\)is bounded if and only if

    $$\displaystyle \begin{aligned} \limsup_{x\rightarrow L}\, (L-x)\int_{[0,x)}d\chi <\infty. \end{aligned} $$
    (A.22)
  2. (ii)

    The operator\(\mathrm {J}_L\)is compact if and only if

    $$\displaystyle \begin{aligned} \lim_{x\rightarrow L} (L-x)\int_{[0,x)}d\chi =0. \end{aligned} $$
    (A.23)
  3. (iii)

    For each\(p>{1}/{2}\), the operator\(\mathrm {J}_L\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_p\)if and only if

    $$\displaystyle \begin{aligned} \int_0^L \biggl((L-x)\int_{[0,x)}d\chi\biggr)^p\frac{dx}{L-x} <\infty. \end{aligned} $$
    (A.24)
  4. (iv)

    If the operator\(\mathrm {J}_L\)belongs to the trace class\(\mathfrak {S}_1\), then its trace is given by

    $$\displaystyle \begin{aligned} \mathrm{tr}\,\mathrm{J}_L = \int_{[0,L)} (L-x) d\chi(x). \end{aligned} $$
    (A.25)
  5. (v)

    If the operator\(\mathrm {J}_L\)belongs to the Schatten–von Neumann class\(\mathfrak {S}_{{1}/{2}}\), then the measure\(\chi \)is singular with respect to the Lebesgue measure.

Proof

By means of the connection established in the proof of Theorem A.4, the claims in (i), (ii) and (iii) follow from [2, Theorem 4.6], the claim in (iv) follows from Theorem A.4(v) and the claim in (v) follows from [2, Corollary 8.12]. □

Appendix B: Linear Relations

Let \(\mathcal {H}\) be a separable Hilbert space. A (closed) linear relation in \(\mathcal {H}\) is a (closed) linear subspace of \(\mathcal {H}\times \mathcal {H}\). Since every linear operator in \(\mathcal {H}\) can be identified with its graph, the set of linear operators can be regarded as a subset of all linear relations in \(\mathcal {H}\). Recall that the domain, the range, the kernel and the multi-valued part of a linear relation \(\Theta \) are given, respectively, by

$$\displaystyle \begin{aligned} \mathrm{dom}(\Theta) &= \{f\in \mathcal{H}\,|\, \exists g\in\mathcal{H}\ \text{such that}\ (f,g)\in \Theta\}, \end{aligned} $$
(B.1)
$$\displaystyle \begin{aligned} \mathrm{ran}(\Theta) &= \{g\in \mathcal{H}\,|\, \exists f\in\mathcal{H}\ \text{such that}\ (f,g)\in \Theta\}, \end{aligned} $$
(B.2)
$$\displaystyle \begin{aligned} \mathrm{ker}(\Theta) &= \{f\in \mathcal{H}\,|\, (f,0)\in \Theta\}, \end{aligned} $$
(B.3)
$$\displaystyle \begin{aligned} \mathrm{mul}(\Theta) &= \{g\in \mathcal{H}\,|\, (0,g)\in \Theta\}. \end{aligned} $$
(B.4)

The adjoint linear relation \(\Theta ^\ast \) of a linear relation \(\Theta \) is defined by

$$\displaystyle \begin{aligned} \Theta^\ast = \big\{ (\tilde{f},\tilde{g})\in \mathcal{H}\times\mathcal{H}\,|\, \langle g , \tilde{f} \rangle _{\mathcal{H}} = \langle f , \tilde{g} \rangle _{\mathcal{H}}\ \text{for all}\ (f,g)\in\Theta\big\}. \end{aligned} $$
(B.5)

The linear relation \(\Theta \) is called symmetric if \(\Theta \subseteq \Theta ^\ast \). It is called self-adjoint if \(\Theta =\Theta ^\ast \). Note that \(\mathrm {mul}(\Theta )\) is orthogonal to \(\mathrm {dom}(\Theta )\) if \(\Theta \) is symmetric. For a closed symmetric linear relation \(\Theta \) satisfying \(\mathrm {mul}(\Theta ) = \mathrm {mul}(\Theta ^\ast )\) (the latter is further equivalent to the fact that \(\Theta \) is densely defined on \(\mathrm {mul}(\Theta )^\perp \)), setting

$$\displaystyle \begin{aligned} \mathcal{H}_{\mathrm{op}}=\overline{\mathrm{dom}(\Theta)} = \mathrm{mul}(\Theta)^\perp, \end{aligned} $$
(B.6)

we obtain the following orthogonal decomposition

$$\displaystyle \begin{aligned} {} \Theta = \Theta_{\mathrm{op}}\oplus \Theta_{\infty}, \end{aligned} $$
(B.7)

where \(\Theta _\infty = \{0\}\times \mathrm {mul}(\Theta )\) and \(\Theta _{\mathrm {op}}\) is the graph of a closed symmetric linear operator in \(\mathcal {H}_{\mathrm {op}}\), called the operator part of \(\Theta \). Notice that for non-closed symmetric linear relations, the decomposition (B.7) may not hold true.

If \(\Theta _1\) and \(\Theta _2\) are linear relations in \(\mathcal {H}\), then their sum \(\Theta _1+\Theta _2\) and their product \(\Theta _2\Theta _1\) are defined by

$$\displaystyle \begin{aligned} \Theta_1+\Theta_2 & = \{(f,g_1+g_2)\,|\, (f,g_1)\in\Theta_1, \ (f,g_2)\in\Theta_2\}, \end{aligned} $$
(B.8)
$$\displaystyle \begin{aligned} \Theta_2\Theta_1 & = \{(f,g)\,|\, (f,h)\in\Theta_1, \ (h,g)\in\Theta_2\ \text{for some}\ h\in\mathcal{H}\}. \end{aligned} $$
(B.9)

The inverse of a linear relation \(\Theta \) is given by

$$\displaystyle \begin{aligned} \Theta^{-1} = \{(g,f)\in \mathcal{H}\times\mathcal{H} \,|\, (f,g)\in \Theta\}. \end{aligned} $$
(B.10)

Consequently, one can consider \((\Theta - z)^{-1}\) for any \(z\in {\mathbb C}\). The set of those \(z\in {\mathbb C}\) for which \((\Theta - z)^{-1}\) is the graph of a closed bounded operator on \(\mathcal {H}\) is called the resolvent set of \(\Theta \) and denoted by \(\rho (\Theta )\). Its complement \(\sigma (\Theta )={\mathbb C}\backslash \rho (\Theta )\) is called the spectrum of \(\Theta \). If \(\Theta \) is self-adjoint, then taking into account (B.7) we obtain

$$\displaystyle \begin{aligned} {} (\Theta - z)^{-1} = (\Theta_{\mathrm{op}} - z)^{-1}\oplus \mathbb{O}_{\mathrm{mul}(\Theta)}. \end{aligned} $$
(B.11)

This immediately implies that \(\rho (\Theta ) = \rho (\Theta _{\mathrm {op}})\), \(\sigma (\Theta ) = \sigma (\Theta _{\mathrm {op}})\) and, moreover, one can introduce the spectral types of \(\Theta \) as those of its operator part \(\Theta _{\mathrm {op}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckhardt, J., Kostenko, A. (2023). Generalized Indefinite Strings with Purely Discrete Spectrum. In: Brown, M., et al. From Complex Analysis to Operator Theory: A Panorama. Operator Theory: Advances and Applications, vol 291. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-31139-0_16

Download citation

Publish with us

Policies and ethics