Skip to main content

Abstract

Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55–60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aare S, Spendiff S, Vuda M, Elkrief D, Perez A, Wu QH, Mayaki D, Hussain SNA, Hettwer S, Hepple RT (2016) Failed reinnervation in aging skeletal muscle. Skelet Muscle 6

    Google Scholar 

  • Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette Guyonnet S, Inzitari M, Nourhashemi F, Onder G, Ritz P, Salva A, Visser M, Vellas B (2009) Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an international academy on nutrition and aging (IANA) task force. J Nutr Health Aging 13(10):881–889. https://doi.org/10.1007/s12603-009-0246-z

    Article  Google Scholar 

  • Addison O, Marcus RL, Lastayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014:309570. https://doi.org/10.1155/2014/309570

    Article  Google Scholar 

  • Alkahtani SA (2017) A cross-sectional study on sarcopenia using different methods: reference values for healthy Saudi young men. BMC Musculoskelet Disord 18(1):119. https://doi.org/10.1186/s12891-017-1483-7

    Article  Google Scholar 

  • Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018) Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol 55(3):2547–2564. https://doi.org/10.1007/s12035-017-0503-9

    Article  Google Scholar 

  • Aoki K, Konno M, Honda K, Abe T, Nagata T, Takehara M, Sugasawa T, Takekoshi K, Ohmori H (2020) Habitual aerobic exercise diminishes the effects of sarcopenia in senescence-accelerated mice Prone8 model. Geriatrics 5(3). https://doi.org/10.3390/geriatrics5030048

  • Apel PJ, Alton T, Northam C, Ma J, Callahan M, Sonntag WE, Li Z (2009) How age impairs the response of the neuromuscular junction to nerve transection and repair: an experimental study in rats. J Orthop Res 27(3):385–393

    Article  Google Scholar 

  • Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20(1):31–42. https://doi.org/10.1038/cdd.2012.81

    Article  Google Scholar 

  • Azzolino D, Spolidoro GCI, Saporiti E, Luchetti C, Agostoni C, Cesari M (2021) Musculoskeletal changes across the lifespan: nutrition and the life-course approach to prevention. Front Med 8:697954. https://doi.org/10.3389/fmed.2021.697954

    Article  Google Scholar 

  • Bai CH, Alizargar J, Peng CY, Wu JP (2020) Combination of exercise training and resveratrol attenuates obese sarcopenia in skeletal muscle atrophy. Chin J Physiol 63(3):101–112. https://doi.org/10.4103/CJP.CJP_95_19

    Article  Google Scholar 

  • Balci K, Turgut N, Nurlu G (2005) Normal values for single fiber EMG parameters of frontalis muscle in healthy subjects older than 70 years. Clin Neurophysiol 116(7):1555–1557. https://doi.org/10.1016/j.clinph.2005.03.001

    Article  Google Scholar 

  • Banker BQ, Kelly SS, Robbins N (1983) Neuromuscular transmission and correlative morphology in young and old mice. J Physiol 339:355–377. https://doi.org/10.1113/jphysiol.1983.sp014721

    Article  Google Scholar 

  • Bao Z, Cui C, Chow SK, Qin L, Wong RMY, Cheung WH (2020) AChRs degeneration at NMJ in aging-associated sarcopenia—a systematic review. Front Aging Neurosci 12:597811. https://doi.org/10.3389/fnagi.2020.597811

    Article  Google Scholar 

  • Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc 14(8):542–559. https://doi.org/10.1016/j.jamda.2013.05.021

    Article  Google Scholar 

  • Bellanti F, Lo Buglio A, Vendemiale G (2021) Mitochondrial impairment in sarcopenia. Biology (Basel) 10(1). https://doi.org/10.3390/biology10010031

  • Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 1863(5):1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

    Article  Google Scholar 

  • Bo Y, Liu C, Ji Z, Yang R, An Q, Zhang X, You J, Duan D, Sun Y, Zhu Y, Cui H, Lu Q (2019) A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: a double-blind randomized controlled trial. Clin Nutr 38(1):159–164. https://doi.org/10.1016/j.clnu.2017.12.020

    Article  Google Scholar 

  • Bohannon RW, Magasi SR, Bubela DJ, Wang YC, Gershon RC (2012) Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve 46(4):555–558. https://doi.org/10.1002/mus.23350

    Article  Google Scholar 

  • Bollheimer LC, Buettner R, Pongratz G, Brunner-Ploss R, Hechtl C, Banas M, Singler K, Hamer OW, Stroszczynski C, Sieber CC, Fellner C (2012) Sarcopenia in the aging high-fat fed rat: a pilot study for modeling sarcopenic obesity in rodents. Biogerontology 13(6):609–620. https://doi.org/10.1007/s10522-012-9405-4

    Article  Google Scholar 

  • Borde R, Hortobagyi T, Granacher U (2015) Dose-response relationships of resistance training in healthy old adults: a systematic review and meta-analysis. Sports Med 45(12):1693–1720. https://doi.org/10.1007/s40279-015-0385-9

    Article  Google Scholar 

  • Buckley JP, Borg GA (2011) Borg’s scales in strength training; from theory to practice in young and older adults. Appl Physiol Nutr Metab 36(5):682–692. https://doi.org/10.1139/h11-078

    Article  Google Scholar 

  • Buckner SL, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Dankel SJ, Loenneke JP (2017) Determining strength: a case for multiple methods of measurement. Sports Med 47(2):193–195. https://doi.org/10.1007/s40279-016-0580-3

    Article  Google Scholar 

  • Burchfield JG, Kebede MA, Meoli CC, Stockli J, Whitworth PT, Wright AL, Hoffman NJ, Minard AY, Ma X, Krycer JR, Nelson ME, Tan SX, Yau B, Thomas KC, Wee NKY, Khor EC, Enriquez RF, Vissel B, Biden TJ, Baldock PA, Hoehn KL, Cantley J, Cooney GJ, James DE, Fazakerley DJ (2018) High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J Biol Chem 293(15):5731–5745. https://doi.org/10.1074/jbc.RA117.000808

    Article  Google Scholar 

  • Bütikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P (2011) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 25(12):4378–4393. https://doi.org/10.1096/fj.11-191262

    Article  Google Scholar 

  • Cawthon PM, Fox KM, Gandra SR, Delmonico MJ, Chiou CF, Anthony MS, Sewall A, Goodpaster B, Satterfield S, Cummings SR, Harris TB, Health A, Body Composition S (2009) Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc 57(8):1411–1419. https://doi.org/10.1111/j.1532-5415.2009.02366.x

    Article  Google Scholar 

  • Cesare MM, Felice F, Santini V, Di Stefano R (2020) Antioxidants in sport sarcopenia. Nutrients 12(9). https://doi.org/10.3390/nu12092869

  • Chen LK, Arai H, Assantachai P, Akishita M, Chew STH, Dumlao LC, Duque G, Woo J (2022) Roles of nutrition in muscle health of community-dwelling older adults: evidence-based expert consensus from Asian Working Group for Sarcopenia. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12981

  • Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  Google Scholar 

  • Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H (2020) Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21(3):300–307 e302. https://doi.org/10.1016/j.jamda.2019.12.012

    Article  Google Scholar 

  • Chen N, He X, Feng Y, Ainsworth BE, Liu Y (2021) Effects of resistance training in healthy older people with sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Eur Rev Aging Phys Act 18(1):23. https://doi.org/10.1186/s11556-021-00277-7

    Article  Google Scholar 

  • Cheng KY, Chow SK, Hung VW, Wong CH, Wong RM, Tsang CS, Kwok T, Cheung WH (2021) Diagnosis of sarcopenia by evaluating skeletal muscle mass by adjusted bioimpedance analysis validated with dual-energy X-ray absorptiometry. J Cachexia Sarcopenia Muscle 4(10):12825

    Google Scholar 

  • Cheung WH, Li CY, Zhu TY, Leung KS (2016) Improvement in muscle performance after one-year cessation of low-magnitude high-frequency vibration in community elderly. J Musculoskelet Neuronal Interact 16(1):4–11

    Google Scholar 

  • Choi EB, Jeong JH, Jang HM, Ahn YJ, Kim KH, An HS, Lee JY, Jeong EA, Lee J, Shin HJ, Kim KE, Roh GS (2021) Skeletal Lipocalin-2 is associated with iron-related oxidative stress in ob/ob mice with sarcopenia. Antioxidants (Basel) 10(5). https://doi.org/10.3390/antiox10050758

  • Collins KH, Hart DA, Reimer RA, Seerattan RA, Waters-Banker C, Sibole SC, Herzog W (2016) High-fat high-sucrose diet leads to dynamic structural and inflammatory alterations in the rat vastus lateralis muscle. J Orthop Res 34(12):2069–2078. https://doi.org/10.1002/jor.23230

    Article  Google Scholar 

  • Cornish SM, Myrie SB, Bugera EM, Chase JE, Turczyn D, Pinder M (2018) Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr Res 60:87–95. https://doi.org/10.1016/j.nutres.2018.09.005

    Article  Google Scholar 

  • Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, Elena JW, Esser KA, Ferrucci L, Harris-Love MO, Kritchevsky SB, Lorbergs A, Shepherd JA, Shulman GI, Rosen CJ (2020) Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the National Institute on Aging. Front Physiol 11:963. https://doi.org/10.3389/fphys.2020.00963

    Article  Google Scholar 

  • Cruz-Jentoft AJ (2018) Beta-hydroxy-beta-methyl butyrate (HMB): from experimental data to clinical evidence in sarcopenia. Curr Protein Pept Sci 19(7):668–672. https://doi.org/10.2174/1389203718666170529105026

    Article  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  Google Scholar 

  • Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afy169

    Article  Google Scholar 

  • Da Boit M, Sibson R, Sivasubramaniam S, Meakin JR, Greig CA, Aspden RM, Thies F, Jeromson S, Hamilton DL, Speakman JR, Hambly C, Mangoni AA, Preston T, Gray SR (2017) Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial. Am J Clin Nutr 105(1):151–158. https://doi.org/10.3945/ajcn.116.140780

    Article  Google Scholar 

  • Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J, Bauer JM, Pahor M, Clark BC, Cesari M, Ruiz J, Sieber CC, Aubertin-Leheudre M, Waters DL, Visvanathan R, Landi F, Villareal DT, Fielding R, Won CW, Theou O, Martin FC, Dong B, Woo J, Flicker L, Ferrucci L, Merchant RA, Cao L, Cederholm T, Ribeiro SML, Rodriguez-Manas L, Anker SD, Lundy J, Gutierrez Robledo LM, Bautmans I, Aprahamian I, Schols J, Izquierdo M, Vellas B (2018) International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. J Nutr Health Aging 22(10):1148–1161. https://doi.org/10.1007/s12603-018-1139-9

    Article  Google Scholar 

  • Derbré F, Gomez-Cabrera MC, Nascimento AL, Sanchis-Gomar F, Martinez-Bello VE, Tresguerres JA, Fuentes T, Gratas-Delamarche A, Monsalve M, Viña J (2012) Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. Age (Dordr) 34(3):669–679. https://doi.org/10.1007/s11357-011-9264-y

    Article  Google Scholar 

  • Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznaric Z, Nair KS, Singer P, Teta D, Tipton K, Calder PC (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr 33(6):929–936. https://doi.org/10.1016/j.clnu.2014.04.007

    Article  Google Scholar 

  • Dodds R, Sayer AA (2015) Sarcopenia and frailty: new challenges for clinical practice. Clin Med (Lond) 15(Suppl 6):s88–s91. https://doi.org/10.7861/clinmedicine.15-6-s88

    Article  Google Scholar 

  • Farmer T, Naslavsky N, Caplan S (2018) Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 19(8):569–577. https://doi.org/10.1111/tra.12573

    Article  Google Scholar 

  • Favaro G, Romanello V, Varanita T, Andrea Desbats M, Morbidoni V, Tezze C, Albiero M, Canato M, Gherardi G, De Stefani D, Mammucari C, Blaauw B, Boncompagni S, Protasi F, Reggiani C, Scorrano L, Salviati L, Sandri M (2019) DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 10(1):2576. https://doi.org/10.1038/s41467-019-10226-9

    Article  Google Scholar 

  • Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256. https://doi.org/10.1016/j.jamda.2011.01.003

    Article  Google Scholar 

  • Gao HE, Li FH, Xie T, Ma S, Qiao YB, Wu DS, Sun L (2021) Lifelong exercise in age rats improves skeletal muscle function and MicroRNA profile. Med Sci Sports Exerc 53(9):1873–1882. https://doi.org/10.1249/mss.0000000000002661

    Article  Google Scholar 

  • Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L (2014) The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci 6:208. https://doi.org/10.3389/fnagi.2014.00208

    Article  Google Scholar 

  • Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol 90(6):2157–2165. https://doi.org/10.1152/jappl.2001.90.6.2157

    Article  Google Scholar 

  • Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB (2008) Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol 105(5):1498–1503. https://doi.org/10.1152/japplphysiol.90425.2008

    Article  Google Scholar 

  • Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080. https://doi.org/10.1038/nrdp.2016.80

    Article  Google Scholar 

  • Ham DJ, Borsch A, Lin S, Thurkauf M, Weihrauch M, Reinhard JR, Delezie J, Battilana F, Wang X, Kaiser MS, Guridi M, Sinnreich M, Rich MM, Mittal N, Tintignac LA, Handschin C, Zavolan M, Ruegg MA (2020) The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat Commun 11(1):4510. https://doi.org/10.1038/s41467-020-18140-1

    Article  Google Scholar 

  • Henríquez-Olguin C, Knudsen JR (2019) Parkin the progression of sarcopenia. J Physiol 597(9):2333–2334. https://doi.org/10.1113/jp277770

    Article  Google Scholar 

  • Herscovich S, Gershon D (1987) Effects of aging and physical training on the neuromuscular junction of the mouse. Gerontology 33(1):7–13

    Article  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Walsh S, Kaiser E, Shell S, Hervey S (2000) Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J Gerontol A Biol Sci Med Sci 55(7):B347–B354. https://doi.org/10.1093/gerona/55.7.b347

    Article  Google Scholar 

  • Hioki M, Kanehira N, Koike T, Saito A, Shimaoka K, Sakakibara H, Oshida Y, Akima H (2020) Age-related changes in muscle volume and intramuscular fat content in quadriceps femoris and hamstrings. Exp Gerontol 132:110834. https://doi.org/10.1016/j.exger.2020.110834

    Article  Google Scholar 

  • Huang Y, Zhu X, Chen K, Lang H, Zhang Y, Hou P, Ran L, Zhou M, Zheng J, Yi L, Mi M, Zhang Q (2019) Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY) 11(8):2217–2240. https://doi.org/10.18632/aging.101910

    Article  Google Scholar 

  • Hughes DC, Marcotte GR, Marshall AG, West DWD, Baehr LM, Wallace MA, Saleh PM, Bodine SC, Baar K (2017) Age-related differences in dystrophin: impact on force transfer proteins, membrane integrity, and neuromuscular junction stability. J Gerontol A Biol Sci Med Sci 72(5):640–648. https://doi.org/10.1093/gerona/glw109

    Article  Google Scholar 

  • Hurst C, Robinson SM, Witham MD, Dodds RM, Granic A, Buckland C, De Biase S, Finnegan S, Rochester L, Skelton DA, Sayer AA (2022) Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing 51(2). https://doi.org/10.1093/ageing/afac003

  • Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89(2):465–471. https://doi.org/10.1152/jappl.2000.89.2.465

    Article  Google Scholar 

  • Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942. https://doi.org/10.1083/jcb.201008084

    Article  Google Scholar 

  • Juel VC (2012) Evaluation of neuromuscular junction disorders in the electromyography laboratory. Neurol Clin 30(2):621–639. https://doi.org/10.1016/j.ncl.2011.12.012

    Article  Google Scholar 

  • Kemmler W, von Stengel S (2012) Alternative exercise technologies to fight against sarcopenia at old age: a series of studies and review. J Aging Res 2012:109013. https://doi.org/10.1155/2012/109013

    Article  Google Scholar 

  • Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, Katayama M (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60(1):16–23. https://doi.org/10.1111/j.1532-5415.2011.03776.x

    Article  Google Scholar 

  • Kirk B, Al Saedi A, Duque G (2019) Osteosarcopenia: a case of geroscience. Aging Med (Milton) 2(3):147–156. https://doi.org/10.1002/agm2.12080

    Article  Google Scholar 

  • Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto FP, Nemir M, Wai T, Pedrazzini T, Manley S (2021) Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593(7859):435–439. https://doi.org/10.1038/s41586-021-03510-6

    Article  Google Scholar 

  • Kneffel Z, Murlasits Z, Reed J, Krieger J (2021) A meta-regression of the effects of resistance training frequency on muscular strength and hypertrophy in adults over 60 years of age. J Sports Sci 39(3):351–358. https://doi.org/10.1080/02640414.2020.1822595

    Article  Google Scholar 

  • Ko IG, Jeong JW, Kim YH, Jee YS, Kim SE, Kim SH, Jin JJ, Kim CJ, Chung KJ (2014) Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. Int Neurourol J 18(2):77–85. https://doi.org/10.5213/inj.2014.18.2.77

    Article  Google Scholar 

  • Kreko-Pierce T, Eaton BA (2018) Rejuvenation of the aged neuromuscular junction by exercise. Cell Stress 2(2):25–33. https://doi.org/10.15698/cst2018.02.123

    Article  Google Scholar 

  • Kulakowski SA, Parker SD, Personius KE (2011) Reduced TrkB expression results in precocious age-like changes in neuromuscular structure, neurotransmission, and muscle function. J Appl Physiol 111(3):844–852

    Article  Google Scholar 

  • Landi F, Cesari M, Calvani R, Cherubini A, Di Bari M, Bejuit R, Mshid J, Andrieu S, Sinclair AJ, Sieber CC, Vellas B, Topinkova E, Strandberg T, Rodriguez-Manas L, Lattanzio F, Pahor M, Roubenoff R, Cruz-Jentoft AJ, Bernabei R, Marzetti E, SPRINTT Consortium (2017) The “Sarcopenia and Physical fRailty IN older people: multi-component Treatment strategies” (SPRINTT) randomized controlled trial: design and methods. Aging Clin Exp Res 29(1):89–100. https://doi.org/10.1007/s40520-016-0715-2

    Article  Google Scholar 

  • Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2013) Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42(2):203–209. https://doi.org/10.1093/ageing/afs194

    Article  Google Scholar 

  • Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31(5):652–658. https://doi.org/10.1016/j.clnu.2012.02.007

    Article  Google Scholar 

  • Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99(1):427–511. https://doi.org/10.1152/physrev.00061.2017

    Article  Google Scholar 

  • Laurentius T, Kob R, Fellner C, Nourbakhsh M, Bertsch T, Sieber CC, Bollheimer LC (2019) Long-chain fatty acids and inflammatory markers coaccumulate in the skeletal muscle of sarcopenic old rats. Dis Markers 2019:9140789. https://doi.org/10.1155/2019/9140789

    Article  Google Scholar 

  • Le NH, Kim CS, Park T, Park JH, Sung MK, Lee DG, Hong SM, Choe SY, Goto T, Kawada T, Yu R (2014) Quercetin protects against obesity-induced skeletal muscle inflammation and atrophy. Mediators Inflamm 2014:834294. https://doi.org/10.1155/2014/834294

    Article  Google Scholar 

  • Le NH, Kim CS, Tu TH, Kim BS, Park T, Park JHY, Goto T, Kawada T, Ha TY, Yu R (2017) Absence of 4-1BB reduces obesity-induced atrophic response in skeletal muscle. J Inflamm (Lond) 14:9. https://doi.org/10.1186/s12950-017-0156-5

    Article  Google Scholar 

  • Lee SR, Khamoui AV, Jo E, Park BS, Zourdos MC, Panton LB, Ormsbee MJ, Kim JS (2015) Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clin Exp Res 27(4):403–411. https://doi.org/10.1007/s40520-015-0316-5

    Article  Google Scholar 

  • Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, Seron P, Ahmed SH, Rosengren A, Kelishadi R, Rahman O, Swaminathan S, Iqbal R, Gupta R, Lear SA, Oguz A, Yusoff K, Zatonska K, Chifamba J, Igumbor E, Mohan V, Anjana RM, Gu H, Li W, Yusuf S (2015) Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. Lancet 386(9990):266–273. https://doi.org/10.1016/S0140-6736(14)62000-6

    Article  Google Scholar 

  • Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 50 Spec No:11-16. https://doi.org/10.1093/gerona/50a.special_issue.11

  • Liang J, Zhang H, Zeng Z, Wu L, Zhang Y, Guo Y, Lv J, Wang C, Fan J, Chen N (2021) Lifelong aerobic exercise alleviates sarcopenia by activating autophagy and inhibiting protein degradation via the AMPK/PGC-1α signaling pathway. Metabolites 11(5). https://doi.org/10.3390/metabo11050323

  • Lin CC, Shih MH, Chen CD, Yeh SL (2021) Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: an open-label, parallel-group study. Clin Nutr 40(3):1323–1329. https://doi.org/10.1016/j.clnu.2020.08.017

    Article  Google Scholar 

  • Liu CJ, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev 3:CD002759. https://doi.org/10.1002/14651858.CD002759.pub2

    Article  Google Scholar 

  • Liu D, Fan YB, Tao XH, Pan WL, Wu YX, Wang XH, He YQ, Xiao WF, Li YS (2021a) Mitochondrial quality control in sarcopenia: updated overview of mechanisms and interventions. Aging Dis 12(8):2016–2030. https://doi.org/10.14336/ad.2021.0427

    Article  Google Scholar 

  • Liu S, Yu C, Xie L, Niu Y, Fu L (2021b) Aerobic exercise improves mitochondrial function in sarcopenia mice through Sestrin2 in an AMPKα2-dependent manner. J Gerontol A Biol Sci Med Sci 76(7):1161–1168. https://doi.org/10.1093/gerona/glab029

    Article  Google Scholar 

  • Lovell DI, Cuneo R, Gass GC (2010) Can aerobic training improve muscle strength and power in older men? J Aging Phys Act 18(1):14–26. https://doi.org/10.1123/japa.18.1.14

    Article  Google Scholar 

  • Lukjanenko L, Brachat S, Pierrel E, Lach-Trifilieff E, Feige JN (2013) Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration. PLoS One 8(8):e71084. https://doi.org/10.1371/journal.pone.0071084

    Article  Google Scholar 

  • Macek P, Terek-Derszniak M, Biskup M, Krol H, Smok-Kalwat J, Gozdz S, Zak M (2020) Assessment of age-induced changes in body fat percentage and BMI aided by Bayesian modelling: a cross-sectional cohort study in middle-aged and older adults. Clin Interv Aging 15:2301–2311. https://doi.org/10.2147/CIA.S277171

    Article  Google Scholar 

  • Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14(5):362–366. https://doi.org/10.1007/s12603-010-0081-2

    Article  Google Scholar 

  • Marzetti E, Calvani R, Lorenzi M, Marini F, D'Angelo E, Martone AM, Celi M, Tosato M, Bernabei R, Landi F (2014) Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older hip fractured patients. Exp Gerontol 60:79–82. https://doi.org/10.1016/j.exger.2014.10.003

    Article  Google Scholar 

  • Mascher H, Ekblom B, Rooyackers O, Blomstrand E (2011) Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiol (Oxf) 202(2):175–184. https://doi.org/10.1111/j.1748-1716.2011.02274.x

    Article  Google Scholar 

  • Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, Thabane L, Raina P (2019) The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing 48(1):48–56. https://doi.org/10.1093/ageing/afy106

    Article  Google Scholar 

  • Moberg M, Apro W, Cervenka I, Ekblom B, van Hall G, Holmberg HC, Ruas JL, Blomstrand E (2021) High-intensity leg cycling alters the molecular response to resistance exercise in the arm muscles. Sci Rep 11(1):6453. https://doi.org/10.1038/s41598-021-85733-1

    Article  Google Scholar 

  • Mori H, Tokuda Y (2018) Effect of whey protein supplementation after resistance exercise on the muscle mass and physical function of healthy older women: a randomized controlled trial. Geriatr Gerontol Int 18(9):1398–1404. https://doi.org/10.1111/ggi.13499

    Article  Google Scholar 

  • Muhammad MH, Allam MM (2018) Resveratrol and/or exercise training counteract aging-associated decline of physical endurance in aged mice; targeting mitochondrial biogenesis and function. J Physiol Sci 68(5):681–688. https://doi.org/10.1007/s12576-017-0582-4

    Article  Google Scholar 

  • Murphy C (2008) The chemical senses and nutrition in older adults. J Nutr Elder 27(3–4):247–265. https://doi.org/10.1080/01639360802261862

    Article  Google Scholar 

  • Nabuco HCG, Tomeleri CM, Sugihara Junior P, Fernandes RR, Cavalcante EF, Antunes M, Ribeiro AS, Teixeira DC, Silva AM, Sardinha LB, Cyrino ES (2018) Effects of whey protein supplementation pre- or post-resistance training on muscle mass, muscular strength, and functional capacity in pre-conditioned older women: a randomized clinical trial. Nutrients 10(5). https://doi.org/10.3390/nu10050563

  • Nguyen MH, Cheng M, Koh TJ (2011) Impaired muscle regeneration in ob/ob and db/db mice. ScientificWorldJournal 11:1525–1535. https://doi.org/10.1100/tsw.2011.137

    Article  Google Scholar 

  • Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13. https://doi.org/10.1016/j.redox.2014.11.006

    Article  Google Scholar 

  • Nieuwenhuizen WF, Weenen H, Rigby P, Hetherington MM (2010) Older adults and patients in need of nutritional support: review of current treatment options and factors influencing nutritional intake. Clin Nutr 29(2):160–169. https://doi.org/10.1016/j.clnu.2009.09.003

    Article  Google Scholar 

  • Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology (Bethesda) 30(1):8–16. https://doi.org/10.1152/physiol.00033.2014

    Article  Google Scholar 

  • Nunan D, Mahtani KR, Roberts N, Heneghan C (2013) Physical activity for the prevention and treatment of major chronic disease: an overview of systematic reviews. Syst Rev 2:56. https://doi.org/10.1186/2046-4053-2-56

    Article  Google Scholar 

  • Oda K (1984) Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres. J Neurol Sci 66(2–3):327–338. https://doi.org/10.1016/0022-510x(84)90021-2

    Article  Google Scholar 

  • Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K (2021) Molecular mechanisms and physiological functions of mitophagy. EMBO J 40(3):e104705. https://doi.org/10.15252/embj.2020104705

    Article  Google Scholar 

  • Osawa Y, Oguma Y, Ishii N (2013) The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact 13(3):380–390

    Google Scholar 

  • Pacifico J, Geerlings MAJ, Reijnierse EM, Phassouliotis C, Lim WK, Maier AB (2020) Prevalence of sarcopenia as a comorbid disease: a systematic review and meta-analysis. Exp Gerontol 131:110801. https://doi.org/10.1016/j.exger.2019.110801

    Article  Google Scholar 

  • Pagliuso A, Cossart P, Stavru F (2018) The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 75(3):355–374. https://doi.org/10.1007/s00018-017-2603-0

    Article  Google Scholar 

  • Papadopoulou SK, Tsintavis P, Potsaki P, Papandreou D (2020) Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. A systematic review and meta-analysis. J Nutr Health Aging 24(1):83–90. https://doi.org/10.1007/s12603-019-1267-x

    Article  Google Scholar 

  • Pasiakos SM, Carbone JW (2014) Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise. IUBMB Life 66(7):478–484. https://doi.org/10.1002/iub.1291

    Article  Google Scholar 

  • Peel NM, Kuys SS, Klein K (2013) Gait speed as a measure in geriatric assessment in clinical settings: a systematic review. J Gerontol A Biol Sci Med Sci 68(1):39–46. https://doi.org/10.1093/gerona/gls174

    Article  Google Scholar 

  • Perkisas S, De Cock AM, Verhoeven V, Vandewoude M (2017) Intramuscular adipose tissue and the functional components of sarcopenia in hospitalized geriatric patients. Geriatrics (Basel) 2(1). https://doi.org/10.3390/geriatrics2010011

  • Perkisas S, Lamers S, Degerickx R, Van Mieghem E, Vandewoude M, Verhoeven V, De Cock A-M (2018) The relation between mortality, intramuscular adipose tissue and sarcopenia in hospitalized geriatric patients. Eur Geriatr Med 9(6):801–807. https://doi.org/10.1007/s41999-018-0110-y

    Article  Google Scholar 

  • Personius KE, Parker SD (2013) TrkB expression at the neuromuscular junction is reduced during aging. Muscle Nerve 47(4):532–538. https://doi.org/10.1002/mus.23616

    Article  Google Scholar 

  • Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, Celis-Morales C (2022) Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13(1):86–99. https://doi.org/10.1002/jcsm.12783

    Article  Google Scholar 

  • Peterson MD, Rhea MR, Sen A, Gordon PM (2010) Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 9(3):226–237. https://doi.org/10.1016/j.arr.2010.03.004

    Article  Google Scholar 

  • Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43(2):249–258. https://doi.org/10.1249/MSS.0b013e3181eb6265

    Article  Google Scholar 

  • Pickles S, Vigié P, Youle RJ (2018) Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 28(4):R170–r185. https://doi.org/10.1016/j.cub.2018.01.004

    Article  Google Scholar 

  • Prokopidis K, Giannos P, Katsikas Triantafyllidis K, Kechagias KS, Mesinovic J, Witard OC, Scott D (2022) Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12976

  • Ren Z, Lan Q, Chen Y, Chan YWJ, Mahady GB, Lee SM (2020) Low-magnitude high-frequency vibration decreases body weight gain and increases muscle strength by enhancing the p38 and AMPK pathways in db/db mice. Diabetes Metab Syndr Obes 13:979–989. https://doi.org/10.2147/DMSO.S228674

    Article  Google Scholar 

  • Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA (2016) Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 310(7):R561–R569. https://doi.org/10.1152/ajpregu.00198.2015

    Article  Google Scholar 

  • Rivas DA, Morris EP, Fielding RA (2011) Lipogenic regulators are elevated with age and chronic overload in rat skeletal muscle. Acta Physiol (Oxf) 202(4):691–701. https://doi.org/10.1111/j.1748-1716.2011.02289.x

    Article  Google Scholar 

  • Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, Bischoff-Ferrari H, Bruyere O, Cesari M, Dawson-Hughes B, Fielding RA, Kaufman JM, Landi F, Malafarina V, Rolland Y, van Loon LJ, Vellas B, Visser M, Cooper C, ESCEO Working Group (2018) Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 37(4):1121–1132. https://doi.org/10.1016/j.clnu.2017.08.016

    Article  Google Scholar 

  • Roelants M, Delecluse C, Verschueren SM (2004) Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc 52(6):901–908. https://doi.org/10.1111/j.1532-5415.2004.52256.x

    Article  Google Scholar 

  • Romanello V, Sandri M (2021) The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci 78(4):1305–1328. https://doi.org/10.1007/s00018-020-03662-0

    Article  Google Scholar 

  • Rondanelli M, Cereda E, Klersy C, Faliva MA, Peroni G, Nichetti M, Gasparri C, Iannello G, Spadaccini D, Infantino V, Caccialanza R, Perna S (2020) Improving rehabilitation in sarcopenia: a randomized-controlled trial utilizing a muscle-targeted food for special medical purposes. J Cachexia Sarcopenia Muscle 11(6):1535–1547. https://doi.org/10.1002/jcsm.12532

    Article  Google Scholar 

  • Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, Faliva MA, Solerte BS, Fioravanti M, Lukaski H, Perna S (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103(3):830–840. https://doi.org/10.3945/ajcn.115.113357

    Article  Google Scholar 

  • Sanz-Paris A, Camprubi-Robles M, Lopez-Pedrosa JM, Pereira SL, Rueda R, Ballesteros-Pomar MD, Garcia Almeida JM, Cruz-Jentoft AJ (2018) Role of oral nutritional supplements enriched with beta-hydroxy-beta-methylbutyrate in maintaining muscle function and improving clinical outcomes in various clinical settings. J Nutr Health Aging 22(6):664–675. https://doi.org/10.1007/s12603-018-0995-7

    Article  Google Scholar 

  • Scuteri A, Lattanzio F, Bernabei R (2016) Life-course approach to chronic disease: the active and healthy aging perspective. J Am Geriatr Soc 64(9):e59–e61. https://doi.org/10.1111/jgs.14271

    Article  Google Scholar 

  • Sebastián D, Sorianello E, Segalés J, Irazoki A, Ruiz-Bonilla V, Sala D, Planet E, Berenguer-Llergo A, Muñoz JP, Sánchez-Feutrie M, Plana N, Hernández-Álvarez MI, Serrano AL, Palacín M, Zorzano A (2016) Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 35(15):1677–1693. https://doi.org/10.15252/embj.201593084

    Article  Google Scholar 

  • Smith DO, Chapman MR (1987) Acetylcholine receptor binding properties at the rat neuromuscular junction during aging. J Neurochem 48(6):1834–1841

    Article  Google Scholar 

  • Smith DO, Williams KD, Emmerling M (1990) Changes in acetylcholine receptor distribution and binding properties at the neuromuscular junction during aging. Int J Dev Neurosci 8(6):629–642. https://doi.org/10.1016/0736-5748(90)90058-a

    Article  Google Scholar 

  • Soendenbroe C, Heisterberg MF, Schjerling P, Karlsen A, Kjaer M, Andersen JL, Mackey AL (2019) Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 60(4):453–463. https://doi.org/10.1002/mus.26638

    Article  Google Scholar 

  • Song J, Herrmann JM, Becker T (2021) Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol 22(1):54–70. https://doi.org/10.1038/s41580-020-00300-2

    Article  Google Scholar 

  • Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J (2011) Gait speed and survival in older adults. JAMA 305(1):50–58. https://doi.org/10.1001/jama.2010.1923

    Article  Google Scholar 

  • Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69(5):547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  • Sylow L, Tokarz VL, Richter EA, Klip A (2021) The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab 33(4):758–780. https://doi.org/10.1016/j.cmet.2021.03.020

    Article  Google Scholar 

  • Takeshima N, Rogers ME, Islam MM, Yamauchi T, Watanabe E, Okada A (2004) Effect of concurrent aerobic and resistance circuit exercise training on fitness in older adults. Eur J Appl Physiol 93(1–2):173–182. https://doi.org/10.1007/s00421-004-1193-3

    Article  Google Scholar 

  • Tamaki T, Hirata M, Uchiyama Y (2014) Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats. Front Aging Neurosci 6:296. https://doi.org/10.3389/fnagi.2014.00296

    Article  Google Scholar 

  • Tanimoto Y, Watanabe M, Sun W, Tanimoto K, Shishikura K, Sugiura Y, Kusabiraki T, Kono K (2013) Association of sarcopenia with functional decline in community-dwelling elderly subjects in Japan. Geriatr Gerontol Int 13(4):958–963. https://doi.org/10.1111/ggi.12037

    Article  Google Scholar 

  • Tardif N, Salles J, Guillet C, Tordjman J, Reggio S, Landrier JF, Giraudet C, Patrac V, Bertrand-Michel J, Migne C, Collin ML, Chardigny JM, Boirie Y, Walrand S (2014) Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2alpha activation. Aging Cell 13(6):1001–1011. https://doi.org/10.1111/acel.12263

    Article  Google Scholar 

  • Tazawa R, Uchida K, Fujimaki H, Miyagi M, Inoue G, Sekiguchi H, Murata K, Takata K, Kawakubo A, Takaso M (2019) Elevated leptin levels induce inflammation through IL-6 in skeletal muscle of aged female rats. BMC Musculoskelet Disord 20(1):199. https://doi.org/10.1186/s12891-019-2581-5

    Article  Google Scholar 

  • Thomson JS, Watson PE, Rowlands DS (2009) Effects of nine weeks of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in resistance trained men. J Strength Cond Res 23(3):827–835. https://doi.org/10.1519/JSC.0b013e3181a00d47

    Article  Google Scholar 

  • Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, Weimann A, Calder PC (2020) Expert opinion on benefits of long-chain Omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients 12(9). https://doi.org/10.3390/nu12092555

  • Tumasian RA, Harish A, Kundu G, Yang J-H, Ubaida-Mohien C, Gonzalez-Freire M, Kaileh M, Zukley LM, Chia CW, Lyashkov A, Wood WH, Piao Y, Coletta C, Ding J, Gorospe M, Sen R, De S, Ferrucci L (2021) Skeletal muscle transcriptome in healthy aging. Nat Commun 12(1). https://doi.org/10.1038/s41467-021-22168-2

  • Turcotte LP, Fisher JS (2008) Skeletal muscle insulin resistance: roles of fatty acid metabolism and exercise. Phys Ther 88(11):1279–1296. https://doi.org/10.2522/ptj.20080018

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2019) World Population Ageing 2019: Highlights. (ST/ESA/SERA/430)

    Google Scholar 

  • Vellas B, Fielding RA, Bens C, Bernabei R, Cawthon PM, Cederholm T, Cruz-Jentoft AJ, Del Signore S, Donahue S, Morley J, Pahor M, Reginster JY, Rodriguez Manas L, Rolland Y, Roubenoff R, Sinclair A, Cesari M (2018) Implications of ICD-10 for sarcopenia clinical practice and clinical trials: report by the international conference on frailty and sarcopenia research task force. J Frailty Aging 7(1):2–9. https://doi.org/10.14283/jfa.2017.30

    Article  Google Scholar 

  • Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S (2004) Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res Off J Am Soc Bone Miner Res 19(3):352–359. https://doi.org/10.1359/JBMR.0301245

    Article  Google Scholar 

  • Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333. https://doi.org/10.1093/gerona/60.3.324

    Article  Google Scholar 

  • Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24(6):623–627. https://doi.org/10.1097/BOR.0b013e328358d59b

    Article  Google Scholar 

  • Watanabe K, Holobar A, Tomita A, Mita Y (2020) Effect of milk fat globule membrane supplementation on motor unit adaptation following resistance training in older adults. Physiol Rep 8(12):e14491. https://doi.org/10.14814/phy2.14491

    Article  Google Scholar 

  • Waters DL (2019) Intermuscular adipose tissue: a brief review of etiology, association with physical function and weight loss in older adults. Ann Geriatr Med Res 23(1):3–8. https://doi.org/10.4235/agmr.19.0001

    Article  Google Scholar 

  • Wenz T (2009) PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 61(11):1051–1062. https://doi.org/10.1002/iub.261

    Article  Google Scholar 

  • White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T (2016) Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 6(1):45. https://doi.org/10.1186/s13395-016-0117-3

    Article  Google Scholar 

  • Willadt S, Nash M, Slater CR (2016) Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci Rep 6

    Google Scholar 

  • Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J (2013) International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr 10(1):6. https://doi.org/10.1186/1550-2783-10-6

    Article  Google Scholar 

  • Wokke JH, Jennekens FG, van den Oord CJ, Veldman H, Smit LM, Leppink GJ (1990) Morphological changes in the human end plate with age. J Neurol Sci 95(3):291–310. https://doi.org/10.1016/0022-510x(90)90076-y

    Article  Google Scholar 

  • Wolfe RR, Miller SL, Miller KB (2008) Optimal protein intake in the elderly. Clin Nutr 27(5):675–684. https://doi.org/10.1016/j.clnu.2008.06.008

    Article  Google Scholar 

  • Woo J, Leung J, Morley JE (2015) Defining sarcopenia in terms of incident adverse outcomes. J Am Med Dir Assoc 16(3):247–252. https://doi.org/10.1016/j.jamda.2014.11.013

    Article  Google Scholar 

  • Wrighton PJ, Shwartz A, Heo JM, Quenzer ED, LaBella KA, Harper JW, Goessling W (2021) Quantitative intravital imaging in zebrafish reveals in vivo dynamics of physiological-stress-induced mitophagy. J Cell Sci 134(4). https://doi.org/10.1242/jcs.256255

  • Wu S, Ning HT, Xiao SM, Hu MY, Wu XY, Deng HW, Feng H (2020) Effects of vibration therapy on muscle mass, muscle strength and physical function in older adults with sarcopenia: a systematic review and meta-analysis. Eur Rev Aging Phys Act 17:14. https://doi.org/10.1186/s11556-020-00247-5

    Article  Google Scholar 

  • Xie F, Zhang F, Min S, Chen J, Yang J, Wang X (2018) Glial cell line-derived neurotrophic factor (GDNF) attenuates the peripheral neuromuscular dysfunction without inhibiting the activation of spinal microglia/monocyte. BMC Geriatr 18(1):110

    Article  Google Scholar 

  • Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, Xiao WF, Li YS (2021) Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle. https://doi.org/10.1002/jcsm.12709

  • Xu Z, You W, Chen W, Zhou Y, Nong Q, Valencak TG, Wang Y, Shan T (2021) Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle 12(1):109–129. https://doi.org/10.1002/jcsm.12643

    Article  Google Scholar 

  • Yada E, Yamanouchi K, Nishihara M (2006) Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J Vet Med Sci 68(5):479–486. https://doi.org/10.1292/jvms.68.479

    Article  Google Scholar 

  • Yamada Y, Nishizawa M, Uchiyama T, Kasahara Y, Shindo M, Miyachi M, Tanaka S (2017) Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health 14(7). https://doi.org/10.3390/ijerph14070809

  • Yuan R, Peters LL, Paigen B (2011) Mice as a mammalian model for research on the genetics of aging. ILAR J 52(1):4–15. https://doi.org/10.1093/ilar.52.1.4

    Article  Google Scholar 

  • Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N (2020) Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front Physiol 11:583478. https://doi.org/10.3389/fphys.2020.583478

    Article  Google Scholar 

  • Zhao K, Shen C, Li L, Wu H, Xing G, Dong Z, Jing H, Chen W, Zhang H, Tan Z, Pan J, Xiong L, Wang H, Cui W, Sun XD, Li S, Huang X, Xiong WC, Mei L (2018) Sarcoglycan alpha mitigates neuromuscular junction decline in aged mice by stabilizing LRP4. J Neurosci 38(41):8860–8873

    Article  Google Scholar 

  • Zhu S, Tian Z, Torigoe D, Zhao J, Xie P, Sugizaki T, Sato M, Horiguchi H, Terada K, Kadomatsu T, Miyata K, Oike Y (2019) Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy. PLoS One 14(8):e0221366. https://doi.org/10.1371/journal.pone.0221366

    Article  Google Scholar 

  • Zoico E, Corzato F, Bambace C, Rossi AP, Micciolo R, Cinti S, Harris TB, Zamboni M (2013) Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriatr 57(3):411–416. https://doi.org/10.1016/j.archger.2013.06.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing-Hoi Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, K.YK. et al. (2023). Sarcopenia and Ageing. In: Harris, J.R., Korolchuk, V.I. (eds) Biochemistry and Cell Biology of Ageing: Part IV, Clinical Science. Subcellular Biochemistry, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-031-26576-1_6

Download citation

Publish with us

Policies and ethics