Skip to main content

New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology

  • Chapter
  • First Online:
Vibrio spp. Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1404))

Abstract

With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absalon C, Van Dellen K, Watnick PI (2011) A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 7(8):e1002210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams DW et al (2019) DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nat Microbiol 4(9):1545–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam A et al (2005) Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect Immun 73(10):6674–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam M et al (2007) Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A 104(45):17801–17806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcolombri U et al (2021) Sinking enhances the degradation of organic particles by marine bacteria. Nat Geosci 14:775–780

    Article  CAS  Google Scholar 

  • Antonova ES, Hammer BK (2011) Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol Lett 322(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Ayala JC et al (2015) Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol 97(4):630–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala JC et al (2018) Molecular basis for the differential expression of the global regulator VieA in Vibrio cholerae biotypes directed by H-NS, LeuO and quorum sensing. Mol Microbiol 107(3):330–343

    Article  CAS  PubMed  Google Scholar 

  • Barney CW et al (2020) Cavitation in soft matter. Proc Natl Acad Sci U S A 117(17):9157–9165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrasso K et al (2022) Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. elife 11:e73010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk V et al (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337(6091):236–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkey CD, Blow N, Watnick PI (2009) Genetic analysis of Drosophila melanogaster susceptibility to intestinal Vibrio cholerae infection. Cell Microbiol 11(3):461–474

    Article  CAS  PubMed  Google Scholar 

  • Beroz F et al (2018) Verticalization of bacterial biofilms. Nat Phys 14(9):954–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billings N et al (2015) Material properties of biofilms-a review of methods for understanding permeability and mechanics. Rep Prog Phys 78(3):036601

    Article  PubMed  PubMed Central  Google Scholar 

  • Blow NS et al (2005) Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS Pathog 1(1):e8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–230

    Article  CAS  PubMed  Google Scholar 

  • Bridges AA, Bassler BL (2019) The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol 17(11):e3000429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges AA, Bassler BL (2021) Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. Elife 10:e65487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges AA, Fei C, Bassler BL (2020) Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. Proc Natl Acad Sci U S A 117(51):32639–32647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broza M et al (2005) Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7(4):576–585

    Article  PubMed  Google Scholar 

  • Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci U S A 101(14):5018–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caro F et al (2020) Transcriptional silencing by TsrA in the evolution of pathogenic Vibrio cholerae biotypes. mBio 11(6):e02901-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Casper-Lindley C, Yildiz FH (2004) VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol 186(5):1574–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabortty T et al (2021) Crystal structure of VpsR revealed novel dimeric architecture and c-di-GMP binding site: mechanistic implications in oligomerization, ATPase activity and DNA binding. J Mol Biol 434(2):167354

    Article  PubMed  Google Scholar 

  • Cho JY et al (2021) The interface of Vibrio cholerae and the gut microbiome. Gut Microbes 13(1):1937015

    Article  PubMed  PubMed Central  Google Scholar 

  • Colwell RR et al (2003) Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci U S A 100(3):1051–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly BD et al (2017) Resource abundance and the critical transition to cooperation. J Evol Biol 30(4):750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner JG et al (2017) The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 36:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pascual F et al (2019) Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nat Microbiol 4(12):2136–2145

    Article  PubMed  PubMed Central  Google Scholar 

  • Drebes Dorr NC, Blokesch M (2020) Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 22(10):4485–4504

    Article  PubMed  PubMed Central  Google Scholar 

  • Drescher K et al (2014) Solutions to the public goods dilemma in bacterial biofilms. Curr Biol 24(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Drescher K et al (2016) Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc Natl Acad Sci U S A 113(14):E2066–E2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enserink M (2010) Infectious diseases. Haiti’s outbreak is latest in cholera’s new global assault. Science 330(6005):738–739

    Article  CAS  PubMed  Google Scholar 

  • Faruque SM et al (2000) The O139 serogroup of Vibrio cholerae comprises diverse clones of epidemic and nonepidemic strains derived from multiple V. cholerae O1 or non-O1 progenitors. J Infect Dis 182(4):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Faruque SM et al (2006) Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci U S A 103(16):6350–6355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei C et al (2020) Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc Natl Acad Sci U S A 117(14):7622–7632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez NL, Waters CM (2019) Cyclic di-GMP increases catalase production and hydrogen peroxide tolerance in Vibrio cholerae. Appl Environ Microbiol 85(18):e01043-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez NL et al (2018) Cyclic di-GMP positively regulates DNA repair in Vibrio cholerae. J Bacteriol 200(15):e00005-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez NL et al (2020) Vibrio cholerae adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proc Natl Acad Sci U S A 117(46):29046–29054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Floyd KA et al (2020) c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun 11(1):1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JC, Yildiz FH (2007) The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189(6):2319–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JC et al (2006) Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188(3):1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JC et al (2010) Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156(Pt 9):2757–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JC et al (2017) Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. Elife 6:e26163

    Article  PubMed  PubMed Central  Google Scholar 

  • Fotedar R (2001) Vector potential of houseflies (Musca domestica) in the transmission of Vibrio cholerae in India. Acta Trop 78(1):31–34

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Hernandez AL et al (2020) Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc Natl Acad Sci U S A 117(20):11010–11017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6(6):552–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan D, Gupta SS, Legros D (2020) Cholera surveillance and estimation of burden of cholera. Vaccine 38(Suppl 1):A13–A17

    Article  PubMed  Google Scholar 

  • Giglio KM et al (2013) Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J Bacteriol 195(14):3277–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guest T et al (2021) Genome-wide mapping of Vibrio cholerae VpsT binding identifies a mechanism for c-di-GMP homeostasis. Nucleic Acids Res 50(1):149–159

    Article  PubMed Central  Google Scholar 

  • Gupta P et al (2018) Increased antibiotic resistance exhibited by the biofilm of Vibrio cholerae O139. J Antimicrob Chemother 73(7):1841–1847

    Article  CAS  PubMed  Google Scholar 

  • Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Halpern M et al (2004) Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol 47(4):341–349

    Article  CAS  PubMed  Google Scholar 

  • Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50(1):101–104

    Article  CAS  PubMed  Google Scholar 

  • Hammer BK, Bassler BL (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191(1):169–177

    Article  CAS  PubMed  Google Scholar 

  • Hang L et al (2003) Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc Natl Acad Sci U S A 100(14):8508–8513

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann R et al (2019) Emergence of three-dimensional order and structure in growing biofilms. Nat Phys 15(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Hassan OB, Nellums LB (2021) Cholera during COVID-19: the forgotten threat for forcibly displaced populations. EClinicalMedicine 32:100753

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay AJ, Zhu J (2015) Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun 83(1):317–323

    Article  PubMed  Google Scholar 

  • Hossain S, Heckler I, Boon EM (2018) Discovery of a nitric oxide responsive quorum sensing circuit in Vibrio cholerae. ACS Chem Biol 13(8):1964–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard MF, Bina XR, Bina JE (2019) Indole inhibits ToxR regulon expression in Vibrio cholerae. Infect Immun 87(3):e00776-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao A et al (2014) Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515(7527):423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh ML, Hinton DM, Waters CM (2018) VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Nucleic Acids Res 46(17):8876–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh ML, Waters CM, Hinton DM (2020) VpsR directly activates transcription of multiple biofilm genes in Vibrio cholerae. J Bacteriol 202(18):e00234-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh ML et al (2022) The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Res 50(8):4484–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D et al (2016) Origins of the current seventh cholera pandemic. Proc Natl Acad Sci U S A 113(48):E7730–E7739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X et al (2020) Mechanism underlying autoinducer recognition in the Vibrio cholerae DPO-VqmA quorum-sensing pathway. J Biol Chem 295(10):2916–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung DT et al (2006) Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59(1):193–201

    Article  CAS  PubMed  Google Scholar 

  • Huq A et al (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45(1):275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley A, Bassler BL (2017) Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae. PLoS Genet 13(5):e1006826

    Article  PubMed  PubMed Central  Google Scholar 

  • Jemielita M, Wingreen NS, Bassler BL (2018) Quorum sensing controls Vibrio cholerae multicellular aggregate formation. elife 7:e42057

    Article  PubMed  PubMed Central  Google Scholar 

  • Jemielita M et al (2021) Secreted proteases control the timing of aggregative community formation in Vibrio cholerae. mBio 12(6):e0151821

    Article  PubMed  Google Scholar 

  • Jiang Z et al (2021) Searching for the secret of stickiness: how biofilms adhere to surfaces. Front Microbiol 12:686793

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung SA, Chapman CA, Ng WL (2015) Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog 11(4):e1004837

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung SA, Hawver LA, Ng WL (2016) Parallel quorum sensing signaling pathways in Vibrio cholerae. Curr Genet 62(2):255–260

    Article  CAS  PubMed  Google Scholar 

  • Kierek K, Watnick PI (2003) The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Proc Natl Acad Sci U S A 100(24):14357–14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438(7069):863–866

    Article  CAS  PubMed  Google Scholar 

  • Koestler BJ, Waters CM (2014) Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. Infect Immun 82(7):3002–3014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovach K et al (2017) Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasteva PV et al (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuna A, Gajewski M (2017) Cholera—the new strike of an old foe. Int Marit Health 68(3):163–167

    Article  PubMed  Google Scholar 

  • Lee SH, Butler SM, Camilli A (2001) Selection for in vivo regulators of bacterial virulence. Proc Natl Acad Sci U S A 98(12):6889–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Kovacikova G, Skorupski K (2007) The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol Microbiol 64(4):953–967

    Article  CAS  PubMed  Google Scholar 

  • Lombardo MJ et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci U S A 104(46):18229–18234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Scrudato M, Blokesch M (2012) The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8(6):e1002778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestre-Reyna M, Wu WJ, Wang AH (2013) Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLoS One 8(12):e82458

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier B (2021) How physical interactions shape bacterial biofilms. Annu Rev Biophys 50:401–417

    Article  CAS  PubMed  Google Scholar 

  • Mashruwala AA, Bassler BL (2020) The Vibrio cholerae quorum-sensing protein VqmA integrates cell density, environmental, and host-derived cues into the control of virulence. mBio 11(4):e01572-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Matz C et al (2005) Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci U S A 102(46):16819–16824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meibom KL et al (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101(8):2524–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrell DS et al (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417(6889):642–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet YA et al (2014) Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10(10):e1004405

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina-Quiroz RC et al (2020) Prophage-dependent neighbor predation fosters horizontal gene transfer by natural transformation. mSphere 5(6)

    Google Scholar 

  • Morris JG Jr et al (1996) Vibrio cholerae O1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J Infect Dis 174(6):1364–1368

    Article  PubMed  Google Scholar 

  • Mudrak B, Tamayo R (2012) The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect Immun 80(5):1794–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller RS et al (2007) Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol 189(14):5348–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller J et al (2007) vpsA- and luxO-independent biofilms of Vibrio cholerae. FEMS Microbiol Lett 275(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Nadell CD et al (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):e14

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadell CD et al (2015) Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9(9):1700–1709

    Article  PubMed  PubMed Central  Google Scholar 

  • Naser IB et al (2017) Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: potential relevance in cholera epidemiology. PLoS One 12(7):e0180838

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesper J et al (2001) Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69(1):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijjer J et al (2021) Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nat Commun 12(1):6632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noorian P et al (2017) Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. FEMS Microbiol Ecol 93(12)

    Google Scholar 

  • Owoicho O, Abechi P, Olwal CO (2021) Cholera in the era of COVID-19 pandemic: a worrying trend in Africa? Int J Public Health 66:1604030

    Article  PubMed  PubMed Central  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papenfort K et al (2015) Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A 112(7):E766–E775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papenfort K et al (2017) A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat Chem Biol 13(5):551–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persat A et al (2015) The mechanical world of bacteria. Cell 161(5):988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson KM, Mekalanos JJ (1988) Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56(11):2822–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires DP, Melo LDR, Azeredo J (2021) Understanding the complex phage-host interactions in biofilm communities. Annu Rev Virol 8(1):73–94

    Article  PubMed  Google Scholar 

  • Popat R et al (2012) Quorum-sensing and cheating in bacterial biofilms. Proc Biol Sci 279(1748):4765–4771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy AE, Watnick PI (2011) Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc Natl Acad Sci U S A 108(49):19737–19742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin B et al (2020) Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 369(6499):71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid MH et al (2004) Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol Lett 230(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187(10):3551–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichhardt C et al (2015) Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. Biochim Biophys Acta 1848(1 Pt B):378–383

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo S et al (2018) Beyond nitrogen metabolism: nitric oxide, cyclic-di-GMP and bacterial biofilms. FEMS Microbiol Lett 365(6)

    Google Scholar 

  • Ritchie JM et al (2010) Back to the future: studying cholera pathogenesis using infant rabbits. mBio 1(1):e00047-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh KP, Sauer K (2020) Biofilm dispersion. Nat Rev Microbiol 18(10):571–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runft DL et al (2014) Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol 80(5):1710–1717

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford ST et al (2011) AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25(4):397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schild S et al (2007) Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2(4):264–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed KD et al (2011) Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. mBio 2(1):e00334-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Senderovich Y, Izhaki I, Halpern M (2010) Fish as reservoirs and vectors of Vibrio cholerae. PLoS One 5(1):e8607

    Article  PubMed  PubMed Central  Google Scholar 

  • Seper A et al (2011) Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 82(4):1015–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikuma NJ, Hadfield MG (2010) Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 26(1):39–46

    Article  CAS  PubMed  Google Scholar 

  • Singh PK et al (2017) Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal. Curr Biol 27(21):3359–3366 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sit B, Fakoya B, Waldor MK (2021) Animal models for dissecting Vibrio cholerae intestinal pathogenesis and immunity. Curr Opin Microbiol 65:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sloup RE et al (2017) Cyclic di-GMP and VpsR induce the expression of type II secretion in Vibrio cholerae. J Bacteriol 99(19):e00106-17

    Google Scholar 

  • Smith DR et al (2015) In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc Natl Acad Sci U S A 112(33):10491–10496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobe RC et al (2017) Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J Biol Chem 292(41):17025–17036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194(17):4485–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava D, Harris RC, Waters CM (2011) Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 193(22):6331–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suckow G, Seitz P, Blokesch M (2011) Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol 193(18):4914–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S et al (2015) Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. ISME J 9(8):1812–1820

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai JSB et al (2022) Social evolution of shared biofilm matrix components. Proc Natl Acad Sci U S A 119(27):e2123469119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo R, Patimalla B, Camilli A (2010) Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 78(8):3560–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teschler JK et al (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13(5):255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64(7):2853–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utada AS et al (2014) Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun 5:4913

    Article  CAS  PubMed  Google Scholar 

  • Vorkapic D et al (2019) A broad spectrum protein glycosylation system influences type II protein secretion and associated phenotypes in Vibrio cholerae. Front Microbiol 10:2780

    Article  PubMed  PubMed Central  Google Scholar 

  • Wai SN et al (1998) Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64(10):3648–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270):1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al (2018) Hypermutation-induced in vivo oxidative stress resistance enhances Vibrio cholerae host adaptation. PLoS Pathog 14(10):e1007413

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters CM et al (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic Di-GMP levels and repression of vpsT. J Bacteriol 190(7):2527–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181(11):3606–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick PI et al (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39(2):223–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watve S et al (2020) Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog 16(2):e1008313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong E et al (2012) The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8(1):e1002373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong GCL et al (2021) Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys Biol 18(5). https://doi.org/10.1088/1478-3975/abdc0e

  • Wotanis CK et al (2017) Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation. PLoS One 12(10):e0186291

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2019) Crystal structure of the Vibrio cholerae VqmA-ligand-DNA complex provides insight into ligand-binding mechanisms relevant for drug design. J Biol Chem 294(8):2580–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wucher BR et al (2019) Vibrio cholerae filamentation promotes chitin surface attachment at the expense of competition in biofilms. Proc Natl Acad Sci U S A 116(28):14216–14221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wucher BR et al (2021) Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 31(12):2643–2651 e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Bassler BL (2019) Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26(1):15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J et al (2016) Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc Natl Acad Sci U S A 113(36):E5337–E5343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Nadell CD, Bassler BL (2017a) Environmental fluctuation governs selection for plasticity in biofilm production. ISME J 11(7):1569–1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J et al (2017b) Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat Commun 8(1):327

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J et al (2018) Bacterial biofilm material properties enable removal and transfer by capillary peeling. Adv Mater 30(46):e1804153

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J et al (2019) Mechanical instability and interfacial energy drive biofilm morphogenesis. Elife 8:e43920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang M et al (2010) The virulence transcriptional activator AphA enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect Immun 78(2):697–703

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96(7):4028–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz FH, Dolganov NA, Schoolnik GK (2001) VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol 183(5):1716–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz FH et al (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53(2):497–515

    Article  CAS  PubMed  Google Scholar 

  • Yildiz F et al (2014) Structural characterization of the extracellular polysaccharide from Vibrio cholerae O1 El-Tor. PLoS One 9(1):e86751

    Article  PubMed  PubMed Central  Google Scholar 

  • Young EC et al (2021) A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. Microbiology (Reading) 167(3):001023

    Article  CAS  PubMed  Google Scholar 

  • Zahid MS et al (2008) Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect Immun 76(11):5266–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q et al (2021) Morphogenesis and cell ordering in confined bacterial biofilms. Proc Natl Acad Sci U S A 118(31):e2107107118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5(4):647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhu J et al (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99(5):3129–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C.M.W. is supported by National Institutes of Health (NIH) grants GM139537 and AI158433. J.Y. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and is also supported by the NIH grant DP2GM146253. J.-S.B.T. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2446-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Waters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tai, JS.B., Ferrell, M.J., Yan, J., Waters, C.M. (2023). New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. In: Almagro-Moreno, S., Pukatzki, S. (eds) Vibrio spp. Infections. Advances in Experimental Medicine and Biology, vol 1404. Springer, Cham. https://doi.org/10.1007/978-3-031-22997-8_2

Download citation

Publish with us

Policies and ethics