Skip to main content

Genetics and Genomics of Cerebral Palsy

  • Chapter
  • First Online:
Neurodevelopmental Pediatrics

Abstract

Cerebral palsy (CP) is a neurodevelopmental disorder characterized by abnormal movement or posture. CP can have many different causes, but genomic copy number variants are causal in at least 4% of patients with typical CP, and at least 14% have disease-causing single nucleotide variants or indels. Pathogenic genomic lesions of major effect probably account the neurological deficits in more than twice as many patients with atypical CP, i.e., neuromotor dysfunction with additional neurodevelopmental abnormalities or malformations, or with MRI findings and medical history that are not characteristic of a perinatal insult. Disease-causing variants of many different genetic loci can produce a CP-like phenotype, and most genetic changes of major effect that cause CP arise as de novo mutations. The importance of genetic variants of minor effect and of epigenetic modifications in producing a multifactorial predisposition to CP is unclear.

Recognizing the specific cause of CP in an affected individual is essential to providing optimal clinical management. An etiological diagnosis provides families an “enhanced compass” that improves overall well-being, facilitates access to educational and social services, permits accurate genetic counseling, and may make precision therapy that targets the pathophysiology available. Trio exome sequencing with assessment of copy number or trio genome sequencing is indicated in the initial clinical workup of children with CP, especially those with additional malformations or neurodevelopmental abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta R, Appleton RE. Cerebral palsy: not always what it seems. Arch Dis Childh. 2001;85(5):356–60.

    Article  CAS  Google Scholar 

  2. Michael-Asalu A, Taylor G, Campbell H, Lelea L, Kirby RS. Cerebral palsy: diagnosis, epidemiology, genetics, and clinical update. Adv Pediatr. 2019;66:189–208.

    Article  Google Scholar 

  3. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat. 2020;16:1505–18.

    Article  Google Scholar 

  4. Sjogren T, Larsson T. Oligophrenia in combination with congenital ichthyosis and spastic disorders; a clinical and genetic study. Acta Psychiatr Neurol Scand Suppl. 1957;113:1–112.

    CAS  Google Scholar 

  5. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36(4):561–70.

    Article  CAS  Google Scholar 

  6. Pearson TS, Pons R, Ghaoui R, Sue CM. Genetic mimics of cerebral palsy. Mov Disord. 2019;34(5):625–36.

    Article  Google Scholar 

  7. MacLennan AH, Lewis S, Moreno-De-Luca A, et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J Child Neurol. 2019;34(8):472–6.

    Article  Google Scholar 

  8. Smithers-Sheedy H, Badawi N, Blair E, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56(4):323–8.

    Article  Google Scholar 

  9. Leach EL, Shevell M, Bowden K, Stockler-Ipsiroglu S, van Karnebeek CDM. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J Rare Dis. 2014;9(1):197.

    Article  Google Scholar 

  10. Luu TM, Vohr B. Twinning on the brain: the effect on neurodevelopmental outcomes. Am J Med Genet Part C Seminars Med Genet. 2009;151C(2):142–7.

    Article  Google Scholar 

  11. Pharoah POD, Dundar Y. Monozygotic twinning, cerebral palsy and congenital anomalies. Hum Reprod Update. 2009;15(6):639–48.

    Article  CAS  Google Scholar 

  12. Tollånes MC, Wilcox AJ, Lie RT, Moster D. Familial risk of cerebral palsy: population based cohort study. Br Med J. 2014;349(2):g4294.

    Article  Google Scholar 

  13. Briana DD, Malamitsi-Puchner A. Twins and neurodevelopmental outcomes: the effect of IVF, fetal growth restriction, and preterm birth. J Matern-Fetal Neonatal Med. 2019;32(13):2256–61.

    Article  Google Scholar 

  14. Burbridge D. Francis galton on twins, heredity and social class. Br J Hist Sci. 2001;34(3):323–40.

    Article  CAS  Google Scholar 

  15. Petterson B, Stanley F, Henderson D. Cerebral palsy in multiple births in western australia: genetic aspects. Am J Med Genet. 1990;37(3):346–51.

    Article  CAS  Google Scholar 

  16. Laplaza FJ, Root L, Tassanawipas A, Cervera P. Cerebral palsy in twins. Dev Med Child Neurol. 1992;34(12):1053–63.

    Article  CAS  Google Scholar 

  17. Burguet A, Monnet E, Pauchard JY, et al. Some risk factors for cerebral palsy in very premature infants: importance of premature rupture of membranes and monochorionic twin placentation. Biol Neonate. 1999;75:177–86.

    Article  CAS  Google Scholar 

  18. Adegbite AL, Castille S, Ward S, Bajoria R. Neuromorbidity in preterm twins in relation to chorionicity and discordant birth weight. Am J Obstet Gynecol. 2004;190(1):156–63.

    Article  Google Scholar 

  19. Hall JG. Twinning. Lancet. 2003;362(9385):735–43.

    Article  Google Scholar 

  20. Ortibus E, Lopriore E, Deprest J, et al. The pregnancy and long-term neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward. Am J Obstet Gynecol. 2009;200(5):494.e1–8.

    Article  Google Scholar 

  21. Hack KEA, Koopman-Esseboom C, Derks JB, et al. Long-term neurodevelopmental outcome of monochorionic and matched dichorionic twins. PLoS ONE. 2009;4(8)

    Google Scholar 

  22. Tollånes MC, Wilcox AJ, Stoltenberg C, Lie RT, Moster D. Neurodevelopmental disorders or early death in siblings of children with cerebral palsy. Pediatrics (Evanston). 2016;138(2):e20160269.

    Article  Google Scholar 

  23. Hemminki K, Li X, Sundquist K, Sundquist J. High familial risks for cerebral palsy implicate partial heritable aetiology. Paediatr Perinat Epidemiol. 2007;21(3):235–41.

    Article  Google Scholar 

  24. Wu D, Zou Y, Xu X, et al. The association of genetic polymorphisms with cerebral palsy: a meta-analysis. Dev Med Child Neurol. 2011;53(3):217–25.

    Article  Google Scholar 

  25. Fahey MC, Maclennan AH, Kretzschmar D, Gecz J, Kruer MC. The genetic basis of cerebral palsy. Dev Med Child Neurol. 2017;59(5):462–9.

    Article  Google Scholar 

  26. van Eyk CL, Corbett MA, Maclennan AH. The emerging genetic landscape of cerebral palsy, vol. 147. Netherlands: Elsevier; 2018. p. 331–42.

    Google Scholar 

  27. Sun L, Xia L, Wang M, et al. Variants of the OLIG2 gene are associated with cerebral palsy in chinese han infants with Hypoxic–Ischemic encephalopathy. Neuromol Med. 2018;21(1):75–84.

    Google Scholar 

  28. Djukic M, Gibson CS, MacLennan AH, et al. Genetic susceptibility to viral exposure may increase the risk of cerebral palsy. Aust N Z J Obstet Gynaecol. 2009;49(3):247–53.

    Article  Google Scholar 

  29. Wu YW, Croen LA, Torres AR, Van De Water J, Grether JK, Hsu NN. Interleukin-6 genotype and risk for cerebral palsy in term and near-term infants. Ann Neurol. 2009;66(5):663–70.

    Article  CAS  Google Scholar 

  30. Kapitanović Vidak H, Catela Ivković T, Jokić M, Spaventi R, Kapitanović S. The association between proinflammatory cytokine polymorphisms and cerebral palsy in very preterm infants. Cytokine. 2012;58(1):57–64.

    Article  Google Scholar 

  31. Kallankari H, Huusko JM, Kaukola T, et al. Cerebral palsy and polymorphism of the chemokine CCL18 in very preterm children. Neonatology. 2015;108(2):124–9.

    Article  CAS  Google Scholar 

  32. Bi D, Wang H, Shang Q, et al. Association of COL4A1 gene polymorphisms with cerebral palsy in a chinese han population. Clin Genet. 2016;90(2):149–55.

    Article  CAS  Google Scholar 

  33. Shang Q, Zhou C, Liu D, et al. Association between osteopontin gene polymorphisms and cerebral palsy in a chinese population. Neuromol Med. 2016;18(2):232–8.

    Article  CAS  Google Scholar 

  34. Xu J, Xia L, Shang Q, et al. A variant of the autophagy-related 5 gene is associated with child cerebral palsy. Front Cell Neurosci. 2017;11:407.

    Article  Google Scholar 

  35. Xia L, Chen M, Bi D, et al. Combined analysis of interleukin-10 gene polymorphisms and protein expression in children with cerebral palsy. Front Neurol. 2018;9:182.

    Article  Google Scholar 

  36. Torres-Merino S, Moreno-Sandoval HN, Thompson-Bonilla MR, et al. Association between rs3833912/rs16944 SNPs and risk for cerebral palsy in mexican children. Mol Neurobiol. 2018;56(3):1800–11.

    Article  Google Scholar 

  37. Xia L, Xu J, Song J, et al. Autophagy-related gene 7 polymorphisms and cerebral palsy in chinese infants. Front Cell Neurosci. 2019;13:494.

    Article  CAS  Google Scholar 

  38. Xu Y, Wang H, Sun Y, et al. The association of apolipoprotein E gene polymorphisms with cerebral palsy in chinese infants. Mol Genet Genomics. 2014;289(3):411–6.

    Article  CAS  Google Scholar 

  39. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4(2):45–61.

    Article  CAS  Google Scholar 

  40. Siontis KCM, Patsopoulos NA, Ioannidis JPA. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur J Hum Genet. 2010;18(7):832–7.

    Article  CAS  Google Scholar 

  41. GWAS catalog. <https://www.ebi.ac.uk/gwas/search?query=cerebral%20palsy.>

  42. Jagiello GM. Familial 13–15 translocation abnormality (Denver classification) associated with one case of cerebral palsy. New Engl J Med. 1963;269(2):66–9.

    Article  CAS  Google Scholar 

  43. Warkany J, Weinstein ED, Soukup SW, Rubinstein JH, Curless MC. Chromosome analyses in a children’s hospital: selection of patients and results of studies. Pediatrrics. 1964;33:290–305.

    Article  CAS  Google Scholar 

  44. Dumars K, Fialko G, Larson E. E trisomy phenotype associated with small metacentric chromosome and a familial Y-22 translocation. Birth Defects Orig Artic Ser. 1976;12(5):97–104.

    CAS  Google Scholar 

  45. Menkes JH, Flores-Sarnat L. Cerebral palsy due to chromosomal anomalies and continuous gene syndromes. Clin Perinatol. 2006;33(2):481–501.

    Article  Google Scholar 

  46. Garne E, Dolk H, Krägeloh-Mann I, Holst Ravn S, Cans C. Cerebral palsy and congenital malformations. Eur J Paediatr Neurol. 2008;12(2):82–8.

    Article  Google Scholar 

  47. Eichler EE. Genetic variation, comparative genomics, and the diagnosis of disease. New Engl J Med. 2019;381(1):64–74.

    Article  CAS  Google Scholar 

  48. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245–57.

    Article  Google Scholar 

  49. Lee RW, Poretti A, Cohen JS, et al. A diagnostic approach for cerebral palsy in the genomic era. NeuroMolecular Medicine. 2014;16(4):821–44.

    Article  CAS  Google Scholar 

  50. Zarrei M, Merico D, Kellam B, et al. A de novo deletion in a boy with cerebral palsy suggests a refined critical region for the 4q21.22 microdeletion syndrome. Am J Med Genet Part A. 2017;173(5):1287–93.

    Article  CAS  Google Scholar 

  51. Wiszniewski W, Gawlinski P, Gambin T, et al. Comprehensive genomic analysis of patients with disorders of cerebral cortical development. Eur J Hum Genet. 2018;26(8):1121–31.

    Article  CAS  Google Scholar 

  52. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062–7.

    Article  CAS  Google Scholar 

  53. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009;84(4):524–33.

    Article  CAS  Google Scholar 

  54. Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet. 2005;14(24):3911–20.

    Article  CAS  Google Scholar 

  55. Vanzo RJ, Twede H, Ho KS, et al. Clinical significance of copy number variants involving KANK1 in patients with neurodevelopmental disorders. Eur J Med Genet. 2019;62(1):15–20.

    Article  Google Scholar 

  56. DECIPHER CNV syndrome list. <http://decipher.sanger.ac.uk>.

  57. Phelan K, Rogers RC, Boccuto L. Phelan-McDermid syndrome. GeneReviews® Web site. http://www.ncbi.nlm.nih.gov/books/NBK1198/. Updated 2018. Accessed Dec 30, 2020.

  58. Segel R, Ben-Pazi H, Zeligson S, et al. Copy number variations in cryptogenic cerebral palsy. Neurology. 2015;84(16):1660–8.

    Article  Google Scholar 

  59. Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol. 2012;99(1):81–91.

    Article  CAS  Google Scholar 

  60. Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med. 2017:9.

    Google Scholar 

  61. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24.

    Article  Google Scholar 

  62. OMIM: Online Mendelian Inheritance In Man. <https://www.omim.org/>.

  63. Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet. 2020;52(10):1046–5.

    Article  CAS  Google Scholar 

  64. Parolin Schnekenberg R, Perkins EM, Miller JW, et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain. 2015;138(7):1817–32.

    Article  Google Scholar 

  65. Takezawa Y, Kikuchi A, Haginoya K, et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann Clin Transl Neurol. 2018;5(5):538–51.

    Article  CAS  Google Scholar 

  66. Matthews AM, Blydt-Hansen I, Al-Jabri B, et al. Atypical cerebral palsy: genomics analysis enables precision medicine. Genet Med. 2019;21(7):1621–8.

    Article  CAS  Google Scholar 

  67. Rosello M, Caro-Llopis A, Orellana C, et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr Res. 2020; https://doi.org/10.1038/s41390-020-01250-3.

  68. Deans C, Maggert KA. What do you mean, “Epigenetic”? Genetics (Austin). 2015;199(4):887–96.

    Article  CAS  Google Scholar 

  69. Romanowska J, Joshi A. From genotype to phenotype: through chromatin. Genes. 2019;10(2):76.

    Article  CAS  Google Scholar 

  70. Radford EJ. An introduction to epigenetic mechanisms. In: Progress in molecular biology and translational science, vol. 158. Elsevier B.V; 2018. p. 29–48.

    Google Scholar 

  71. Crowgey E, Marsh A, Robinson K, Yeager S, Akins R. Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy. BMC Bioinform. 2018;19:225.

    Article  Google Scholar 

  72. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Mishra NK, Guda C, Radhakrishna U. Deep learning/artificial intelligence and blood-based DNA epigenomic prediction of cerebral palsy. Int J Mol Sci. 2019;20(9):2075.

    Article  CAS  Google Scholar 

  73. Mohandas N, Bass-Stringer S, Maksimovic J, et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics. 2018;10(1):25.

    Article  Google Scholar 

  74. Jiao Z, Jiang Z, Wang J, et al. Whole-genome scale identification of methylation markers specific for cerebral palsy in monozygotic discordant twins. Mol Med Rep. 2017;16(6):9423–30.

    Article  CAS  Google Scholar 

  75. McMichael G, Girirajan S, Moreno-De-Luca A, et al. Rare copy number variation in cerebral palsy. Eur J Hum Genet. 2014;22(1):40–5.

    Article  CAS  Google Scholar 

  76. Oskoui M, Gazzellone MJ, Thiruvahindrapuram B, et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun. 2015;6(1):7949.

    Article  CAS  Google Scholar 

  77. van Eyk CL, Corbett MA, Maclennan AH. The emerging genetic landscape of cerebral palsy. In: Handbook of clinical neurology, vol. 147. Elsevier B.V; 2018. p. 331–42.

    Google Scholar 

  78. Makela NL, Birch PH, Friedman JM, Marra CA. Parental perceived value of a diagnosis for intellectual disability (ID): a qualitative comparison of families with and without a diagnosis for their child’s ID. Am J Med Genet A. 2009;149A(11):2393–402.

    Article  Google Scholar 

  79. Berrios C, Koertje C, Noel-MacDonnell J, Soden S, Lantos J. Parents of newborns in the NICU enrolled in genome sequencing research: hopeful, but not naïve. Genet Med. 2020;22(2):416–22.

    Article  Google Scholar 

  80. Leach EL, Shevell M, Bowden K, Stockler-Ipsiroglu S, van Karnebeek CDM. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J Rare Dis. 2014;9:197. Accessed Jan 6, 2021

    Article  Google Scholar 

  81. Cheng X, Li T, Wang H, et al. Methylenetetrahydrofolate reductase gene polymorphisms and cerebral palsy in chinese infants. J Hum Genet. 2011;56(1):17–21.

    Article  CAS  Google Scholar 

  82. Lin S, Li T, Zhu D, et al. The association between GAD1 gene polymorphisms and cerebral palsy in chinese infants. Tsitol Genet. 2013;47(5):22–7.

    CAS  Google Scholar 

  83. O’Callaghan ME, MacLennan AH, Gibson CS, et al. Genetic and clinical contributions to cerebral palsy: a multi-variable analysis. J Paediatr Child Health. 2013;49(7):575–81.

    Article  Google Scholar 

  84. Khankhanian P, Baranzini SE, Johnson BA, et al. Sequencing of the IL6 gene in a case-control study of cerebral palsy in children. BMC Med Genet. 2013;14(1)

    Google Scholar 

  85. Bi D, Chen M, Zhang X, et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. J Neuroinflammation. 2014;11(1):100.

    Article  Google Scholar 

  86. He X, Peng Q, Chen Y, et al. Candidate single-nucleotide polymorphisms and cerebral palsy: a case-control study. Biomedical Reports. 2015;3(6):849–52.

    Article  CAS  Google Scholar 

  87. Clark EAS, Weiner SJ, Rouse DJ, et al. Genetic variation, magnesium sulfate exposure, and adverse neurodevelopmental outcomes following preterm birth. J Perinatol. 2018;35:1012–22.

    Article  Google Scholar 

  88. Yu T, Xia L, Bi D, et al. Association of NOS1 gene polymorphisms with cerebral palsy in a Han Chinese population: a case-control study. BMC Med Genomics. 2018;11(1):56.

    Article  Google Scholar 

  89. Zarrei M, Fehlings DL, Mawjee K, et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med. 2018;20(2):172–80.

    Article  Google Scholar 

  90. Zhu Q, Ni Y, Wang J, et al. Identification of pathways and genes associated with cerebral palsy. Genes Genomics. 2018;40(12):1339–49.

    Article  CAS  Google Scholar 

  91. van Eyk CL, Corbett MA, Frank MSB, et al. Targeted resequencing identifies genes with recurrent variation in cerebral palsy. NPJ Genomic Med. 2019;4(1):1–11.

    Google Scholar 

  92. McMichael G, Bainbridge MN, Haan E, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20(2):176–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Peter van Essen, MSc (Radboudumc, The Netherlands) for the literature search and data extraction. This study makes use of data generated by the DECIPHER community. A full list of centres which contributed to the generation of the data is available from https://decipher.sanger.ac.uk/about/stats and via email from decipher@sanger.ac.uk. Funding for the DECIPHER project was provided by Wellcome. Those who carried out the original analyses and data collection bear no responsibility for the further analysis or interpretation of the data.

Multiple Choice Questions

  1. 1.

    The mode of inheritance in the majority of cerebral palsy patients is:

    1. (a)

      X-linked dominant (de novo)

    2. (b)

      Autosomal recessive

    3. (c)

      Autosomal dominant (de novo)

    4. (d)

      None of the above

  1. 2.

    Establishing a diagnosis in cerebral palsy has implications for

    1. (a)

      Supportive care

    2. (b)

      Prognosis and counselling

    3. (c)

      Prevention and treatment

    4. (d)

      All of the above

  1. 3.

    In patients with cerebral palsy, genetic aberrations occur with the following frequencies

    1. (a)

      disease-causing copy number variants: 4%, and single nucleotide variants or indels: 14%

    2. (b)

      disease-causing copy number variants: 4% and epigenetic signatures: 21%

    3. (c)

      single nucleotide variants or indels: 14% and epigenetic signatures: 21%

    4. (d)

      structural and numeric chromosomal abnormalities: 13% and single nucleotide variants or indels: 14%

  1. 4.

    The yield of genetic/genomic testing increases if the following features are present:

    1. (a)

      positive family history for cerebral palsy, periventricular leukomalacia on neuro-imaging, progressive disease course

    2. (b)

      progressive disease course, multi-organ involvement, affected siblings

    3. (c)

      unexplained death in the family, progressive disease course, normal neuro-imaging

    4. (d)

      abnormalities on prenatal sonogram, normal newborn screening, behavioural problems

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedman, J., van Karnebeek, C. (2023). Genetics and Genomics of Cerebral Palsy. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics