Skip to main content

Sustainable Approach of the Natural Rubber

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Elastomers correspond to a wide group of polymers, which are mostly obtained from non-renewable sources, such as crude oil. However, natural rubber is extracted from plant sources, such as Hevea brasiliensis and Parthenium argentatum, among others. In fact, several plants synthesize cis-1,4-polyisoprene through rubber transferase. Nevertheless, environmental, and social issues related with natural rubber difficult its integration in a circular economy approach. Therefore, this work is aimed to the understanding the fundamental aspects of the biosynthesis of cis-1,4-polyisoprene, as well as its biological degradation. Regarding the bacterial degradation, the use of bacteria genus, such as Gordonia, Mycobacterium, Nocardia and Streptomyces for degrading natural rubber, is boarded. Likewise, fungal degradation carried out by fungi species such as Aspergillus, and Penicillium genus is reviewed. The advances related to the isolation of Latex clearing protein (Lpc) and Rubber oxygenase A from Gram-positive Streptomyces sp. 30 and Xanthomonas sp. 35 Y, respectively, also are revised. Additionally, the processes, reactions and additives used in natural rubber for its use in different applications and how they can hinder the degradation of this material are boarded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cowie, J.M.G. Arrighi, V.: Polymers: Chemistry and Physics of Modern Materials, 3th edition. CRC press, Boca Raton (2007). https://doi.org/10.1201/9781420009873

  2. Cornish, K., Xie, W.: Chapter four—natural rubber biosynthesis in plants: rubber transferase. In: Hopwood, D.A. (ed.) Natural Product Biosynthesis by Microorganisms and Plants, Part A, pp. 63–82. Academic Press (2012). https://doi.org/10.1016/B978-0-12-394290-6.00004-5

  3. Backhaus, R.A.: Natural rubber from plants. In: Kaplan, D.L. (eds.) Biopolymers from Renewable Resources. Macromolecular Systems—Materials Approach. Springer, Berlin, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03680-8_13

  4. Cornish, K.: Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57, 1123–1134 (2001). https://doi.org/10.1016/S0031-9422(01)00097-8

    Article  CAS  Google Scholar 

  5. Cherian, S., Ryu, S.B., Cornish, K.: Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 17, 2041–2061 (2019). https://doi.org/10.1111/pbi.13181

    Article  Google Scholar 

  6. Hodgson-Kratky, K.J.M., Demers, M.N.K., Stoffyn, O.M., Wolyn, D.J.: Harvest date, post-harvest vernalization and regrowth temperature affect flower bud induction in Russian dandelion (Taraxacum kok-saghyz). Can. J. Plant Sci. 95, 1221–1228 (2015). https://doi.org/10.4141/cjps-2015-020

    Article  Google Scholar 

  7. Ho, C.-C.: Colloids in industries: polymer colloids. In: Tadros, T. (ed.) Encyclopedia of Colloid and Interface Science. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-20665-8_167

  8. Langford, A., Bruchsaler, M., Gupta, M.: 8—Suspension properties and characterization of aluminum-adjuvanted vaccines. In: Kolhe, P., Ohtake, P. (eds.) Practical Aspects of Vaccine Development (2022). https://doi.org/10.1016/B978-0-12-814357-5.00008-8

  9. Ho, C.C.: CHAPTER 4 the production of natural rubber from hevea brasiliensis latex: colloidal properties, preservation, purification and processing. In: Natural Rubber Materials: Volume 1: Blends and IPNs, pp. 73–106. The Royal Society of Chemistry (2014). https://doi.org/10.1039/9781849737647-00073

  10. Lim, H.M., Misni, M.: Colloidal and rheological properties of natural rubber latex concentrate. Appl. Rheol. 26, 25–34 (2016). https://doi.org/10.3933/applrheol-26-15659

    Article  Google Scholar 

  11. Aguilar-Bolados, H., Yazdani-Pedram, M., Verdejo, R.: Thermal, electrical, and sensing properties of rubber nanocomposites. High-Performance Elastomeric Mater. Reinf. Nano-Carbons. 149–175 (2020). https://doi.org/10.1016/B978-0-12-816198-2.00007-4

  12. Mostoni, S., Milana, P., Di Credico, B., D’Arienzo, M., Scotti, R.: Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysis 9, 664 (2019). https://doi.org/10.3390/catal9080664

    Article  CAS  Google Scholar 

  13. Mohammad, A., Simon, G.P.: 12—Rubber-clay nanocomposites. In: Mai, Y.-W., Yu, Z.-Z. (eds.) Woodhead Publishing Series in Composites Science and Engineering, pp. 297–325. Woodhead Publishing (2006). https://doi.org/10.1533/9781845691127.1.297

  14. Ciullo, P.A., Hewitt, N.: Compounding materials. In: Ciullo, P.A., Hewitt, N.B.T.-T.R.F. (eds.) Plastics Design Library, pp. 4–49. William Andrew Publishing, Norwich, NY (1999). https://doi.org/10.1016/B978-081551434-3.50003-8

  15. Bin Samsuri, A., Abdullahi, A.A.: Degradation of natural rubber and synthetic elastomers. In: Cottis, B., Graham, M., Lindsay, R., Lyon, S. Richardson, T., Scantlebury S., Stott, H. (eds.) Shreir’s Corrosion (2017). https://doi.org/10.1016/B978-044452787-5.00117-7

  16. Guess, W.L., O’Leary, R.K.: Toxicity of a rubber accelerator. Toxicol. Appl. Pharmacol. 14, 221–231 (1969). https://doi.org/10.1016/0041-008X(69)90102-1

    Article  CAS  Google Scholar 

  17. Sun, H., Yao, Z., Wang, D., Wu, X., Lin, Z., Liu, Y.: A deep insight into the toxic mechanism for sulfonamides based on bacterial cell-cell communication. Environ. Int. 129, 185–193 (2019). https://doi.org/10.1016/j.envint.2019.05.041

    Article  CAS  Google Scholar 

  18. Kitagawa, E., Takahashi, J., Momose, Y., Iwahashi, H.: Effects of the pesticide thiuram: genome-wide screening of indicator genes by yeast DNA microarray. Environ. Sci. Technol. 36, 3908–3915 (2002). https://doi.org/10.1021/es015705v

    Article  CAS  Google Scholar 

  19. Wysocka-Paruszewska, B., Osicka, A., Brzeziński, J., Gradowska, I.: An evaluation of the toxicity of thiuram in combination with other pesticides. In: Chambers, P.L., Klinger, W. (eds.) Further Studies in the Assessment of Toxic Actions. Archives of Toxicology, vol. 4. Springer, Berlin, Heidelberg (1980). https://doi.org/10.1007/978-3-642-67729-8_105

  20. Gupta, P.K.: Chapter 27—Herbicides and fungicides. In: Gupta, R.C. (ed.) Biomarkers in Toxicology (2019). https://doi.org/10.1016/B978-0-12-814655-2.00027-X

  21. Nakao, Y., Fusetani, N.: 2.10—marine invertebrates: sponges. In: Liu, H.-W., Lew, M. (eds.) Comprehensive Natural Products II (2010). https://doi.org/10.1016/B978-008045382-8.00043-5

  22. Tahir, S., Badshah, A., Hussain, R.A.: Guanidines from ‘toxic substances’ to compounds with multiple biological applications—detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg. Chem. 59, 39–79 (2015). https://doi.org/10.1016/j.bioorg.2015.01.006

    Article  CAS  Google Scholar 

  23. Rothon, R.: Particulate fillers in elastomers. In: Rothon, R. (eds.) Fillers for Polymer Applications. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-28117-9_9

  24. Zyska, B.J.: Microbial deterioration of rubber. In: Houghton, D.R., Smith, R.N., Eggins, H.O.W. (eds.) Biodeterioration 7. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-009-1363-9_71

  25. Tsuchii, A., Suzuki, T., Takeda, K.: Microbial degradation of natural rubber vulcanizates. Appl. Environ. Microbiol. 50, 965–970 (1985). https://doi.org/10.1128/aem.50.4.965-970.1985

    Article  CAS  Google Scholar 

  26. Stevenson, K., Stallwood, B., Hart, A.G.: Tire rubber recycling and bioremediation: a review. Bioremediat. J. 12, 1–11 (2008). https://doi.org/10.1080/10889860701866263

    Article  CAS  Google Scholar 

  27. Freitag, M., Morrell, J.J.: Decolorization of the polymeric dye Poly R-478 by wood-inhabiting fungi. Can. J. Microbiol. 38, 811–822 (1992). https://doi.org/10.1139/m92-133

    Article  CAS  Google Scholar 

  28. Bredberg, K., Erik Andersson, B., Landfors, E., Holst, O.: Microbial detoxification of waste rubber material by wood-rotting fungi. Bioresour. Technol. 83, 221–224 (2002). https://doi.org/10.1016/S0960-8524(01)00218-8

    Article  CAS  Google Scholar 

  29. Imai, S., Ichikawa, K., Muramatsu, Y., Kasai, D., Masai, E., Fukuda, M.: Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene). Enzyme Microb. Technol. 49, 526–531 (2011). https://doi.org/10.1016/j.enzmictec.2011.05.014

    Article  CAS  Google Scholar 

  30. Decomposition of rubber by micro-organisms. J. Franklin Inst. 178, 225 (1914). https://doi.org/10.1016/S0016-0032(14)90608-1

  31. Heisey, R.M., Papadatos, S.: Isolation of microorganisms able to metabolize purified natural rubber. Appl. Environ. Microbiol. 61, 3092–3097 (1995). https://doi.org/10.1128/aem.61.8.3092-3097.1995

    Article  CAS  Google Scholar 

  32. Linos, A., Berekaa, M.M., Steinbüchel, A., Kim, K.K., Sproer, C., Kroppenstedt, R.M.: Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int. J. Syst. Evol. Microbiol. 52, 1133–1139 (2002). https://doi.org/10.1099/00207713-52-4-1133

  33. Jendrossek, D., Tomasi, G., Kroppenstedt, R.M.: Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol. Lett. 150, 179–188 (1997). https://doi.org/10.1111/j.1574-6968.1997.tb10368.x

    Article  CAS  Google Scholar 

  34. Bosco, F., Mollea, C.: Biodegradation of natural rubber: microcosm study. Water, Air, Soil Pollut. 232, 227 (2021). https://doi.org/10.1007/s11270-021-05171-7

  35. Linos, A., Reichelt, R., Keller, U., Steinbüchel, A.: A gram-negative bacterium, identified as Pseudomonas aeruginosa AL98, is a potent degrader of natural rubber and synthetic cis-1,4-polyisoprene. FEMS Microbiol. Lett. 182, 155–161 (2000). https://doi.org/10.1111/j.1574-6968.2000.tb08890.x

    Article  CAS  Google Scholar 

  36. Karsten, R., Alexander, S.: Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl. Environ. Microbiol. 71, 2803–2812 (2005). https://doi.org/10.1128/AEM.71.6.2803-2812.2005

    Article  CAS  Google Scholar 

  37. Jendrossek, D., Reinhardt, S.: Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex. FEMS Microbiol. Lett. 224, 61–65 (2003). https://doi.org/10.1016/S0378-1097(03)00424-5

  38. Wolf, R., Stefanie, A., Jakob, B., Dieter, J., E, P.R.: Cleavage of rubber by the latex clearing protein (Lcp) of streptomyces sp. strain K30: molecular insights. Appl. Environ. Microbiol. 82, 6593–6602 (2016). https://doi.org/10.1128/AEM.02176-16

  39. Watcharakul, S., Röther, W., Birke, J., Umsakul, K., Hodgson, B., Jendrossek, D.: Biochemical and spectroscopic characterization of purified latex clearing protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol. 16, 92 (2016). https://doi.org/10.1186/s12866-016-0703-x

    Article  CAS  Google Scholar 

  40. Ali Shah, A., Hasan, F., Shah, Z., Kanwal, N., Zeb, S.: Biodegradation of natural and synthetic rubbers: a review. Int. Biodeterior. Biodegradation. 83, 145–157 (2013). https://doi.org/10.1016/j.ibiod.2013.05.004

    Article  CAS  Google Scholar 

  41. Braga, S.P., dos Santos, A.P., Paganini, T., Barbosa, D., Epamino, G.W.C., Morais, C., Martins, L.F., Silva, A.M., Setubal, J.C., Vallim, M.A., Pascon, R.C.: First report of cis-1,4-polyisoprene degradation by Gordonia paraffinivorans. Brazilian J. Microbiol. 50, 1051–1062 (2019). https://doi.org/10.1007/s42770-019-00143-w

    Article  CAS  Google Scholar 

  42. Kwiatkowska, D., Zyska, B.J.: Changes in natural rubber vulcanizates due to microbial degradation. In: Houghton, D.R., Smith, R.N., Eggins, H.O.W. (eds.) Biodeterioration 7. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-009-1363-9_75

  43. Borel, M., Kergomard, A., Renard, M.F.: Degradation of natural rubber by fungi imperfecti. Agric. Biol. Chem. 46, 877–881 (1982). https://doi.org/10.1080/00021369.1982.10865189

    Article  CAS  Google Scholar 

  44. Asgher, M., Bhatti, H.N., Ashraf, M., Legge, R.L.: Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19, 771 (2008). https://doi.org/10.1007/s10532-008-9185-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.A.-B. acknowledges the ANID FONDECYT Iniciación project N° 11200437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Aguilar-Bolados .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilar-Bolados, H., Bascuñan-Heredia, A., Alvarez, G. (2023). Sustainable Approach of the Natural Rubber. In: Avalos Belmontes, F., González, F.J., López-Manchado, M.Á. (eds) Green-Based Nanocomposite Materials and Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18428-4_14

Download citation

Publish with us

Policies and ethics