Skip to main content

Modeling Phase Change Materials Using Cellular Automata

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

This work proposes a recent model for modelling the Phase Change (PC) phenomenon based on Cellular Automata (CA) of composite and heterogeneous materials with a complex geometry. We aim to describe the temperature distribution and phases (liquid/solid) evolution for multi-components materials. The main idea of this paper is to answer the problem of the high complexity generated when the classical methods for modelling the PC is used in the case of heterogeneous materials and complex geometry. For this purpose, Each cell was associated with a set of attributes that characterize each portion of modelled material, such as thermal conductivity, specific heat capacity, material density, a specific material phase change temperature, Latent heat, etc .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alawadhi, E.M., Alqallaf, H.J.: Building roof with conical holes containing PCM to reduce the cooling load: numerical study. Energy Convers. Manage. 52(8–9), 2958–2964 (2011)

    Article  Google Scholar 

  2. Bondareva, N.S., Buonomo, B., Manca, O., Sheremet, M.A.: Heat transfer performance of the finned nano-enhanced phase change material system under the inclination influence. Int. J. Heat Mass Transf. 135, 1063–1072 (2019)

    Article  Google Scholar 

  3. Buckley, T.M.: Phase change material thermal capacitor clothing. US Patent 6,855,410, 15 Feb 2005

    Google Scholar 

  4. Byari, M., Bernoussi, A.S., Ouardouz, M., Amharref, M.: Control of 3D cellular automata via actuator and space attributes: application to fires forest. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds.) Cellular Automata. ACRI 2020. LNCS, vol. 12599. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69480-7_13

  5. Choi, S.-W., Zhang, Y., Xia, Y.: A temperature-sensitive drug release system based on phase-change materials. Angew. Chem. Int. Ed. 49(43), 7904–7908 (2010)

    Article  Google Scholar 

  6. Cortie, M.: Simulation of metal solidification using a cellular automaton. Metall. Trans. B 24(6), 1045–1053 (1993)

    Article  Google Scholar 

  7. Diaconu, B.M., Cruceru, M.: Novel concept of composite phase change material wall system for year-round thermal energy savings. Energy Build. 42(10), 1759–1772 (2010)

    Article  Google Scholar 

  8. Gin, B., Farid, M.M.: The use of PCM panels to improve storage condition of frozen food. J. Food Eng. 100(2), 372–376 (2010)

    Article  Google Scholar 

  9. Hirst, A.R., Escuder, B., Miravet, J.F., Smith, D.K.: High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47(42), 8002–8018 (2008)

    Article  Google Scholar 

  10. Hu, Y., Huang, D., Qi, Z., He, S., Yang, H., Zhang, H.: Modeling thermal insulation of firefighting protective clothing embedded with phase change material. Heat Mass Transf. 49(4), 567–573 (2013)

    Article  Google Scholar 

  11. Kandasamy, R., Wang, X.-Q., Mujumdar, A.S.: Application of phase change materials in thermal management of electronics. Appl. Therm. Eng. 27(17–18), 2822–2832 (2007)

    Article  Google Scholar 

  12. Kuznik, F., Virgone, J., Noel, J.: Optimization of a phase change material wallboard for building use. Appl. Therm. Eng. 28(11–12), 1291–1298 (2008)

    Article  Google Scholar 

  13. Łach, Ł, Nowak, J., Svyetlichnyy, D.: The evolution of the microstructure in AISI 304L stainless steel during the flat rolling-modeling by frontal cellular automata and verification. J. Mater. Process. Technol. 255, 488–499 (2018)

    Article  Google Scholar 

  14. Reuther, K., Rettenmayr, M.: Perspectives for cellular automata for the simulation of dendritic solidification-a review. Comput. Mater. Sci. 95, 213–220 (2014)

    Article  Google Scholar 

  15. Salaün, F., Devaux, E., Bourbigot, S., Rumeau, P.: Development of phase change materials in clothing part I: formulation of microencapsulated phase change. Text. Res. J. 80(3), 195–205 (2010)

    Article  Google Scholar 

  16. Šarler, B.: Stefan’s work on solid-liquid phase changes. Eng. Anal. Boundary Elem. 16(2), 83–92 (1995)

    Article  Google Scholar 

  17. Selivorstova, T., Selivorstov, V., Guda, A., Ostrovska, K.: Thermodynamic fundamentals of cellular automata model of the process of solidification of metals and alloys considering the phase transition. In: ICTES (2020)

    Google Scholar 

  18. Svyetlichnyy, D.S., Nowak, J., Łach, Ł.: Modeling of recrystallization with recovery by frontal cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 494–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_51

  19. Tulapurkar, C., Subramaniam, P.R., Thagamani, G., Thiyagarajan, R.: Phase change materials for domestic refrigerators to improve food quality and prolong compressor off time (2010)

    Google Scholar 

  20. Voller, V.R., Prakash, C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 30(8), 1709–1719 (1987)

    Article  Google Scholar 

  21. Xiaoqing, L., Peng, Y., Renqiang, L., Hui, J., Xiaoyan, L.: A novel model for calculating the melting process of composite phase change materials. J. Energy Storage 30, 101504 (2020)

    Article  Google Scholar 

  22. Zhao, Y., Qin, R., Chen, D.: A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification. J. Cryst. Growth 377, 72–77 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by MESRSFC and CNRST under the project PPR2-OGI-Env, reference PPR2/2016/79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Khaddor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaddor, Y., Bernoussi, As., Addi, K., Byari, M., Ouardouz, M. (2022). Modeling Phase Change Materials Using Cellular Automata. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics