Skip to main content

Beyond Chaperoning: UCS Proteins Emerge as Regulators of Myosin-Mediated Cellular Processes

  • Chapter
  • First Online:
The Networking of Chaperones by Co-Chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 101))

Abstract

The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim MJ, Mata J (2009) Rng3, a member of the UCS family of myosin co-chaperones, associates with myosin heavy chains cotranslationally. EMBO Rep 10(2):186–191

    Article  CAS  Google Scholar 

  • Anderson MJ, Pham VN, Vogel AM et al (2008) Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 318(2):258–267

    Article  CAS  Google Scholar 

  • Ao W, Pilgrim D (2000) Caenorhabditis elegans UNC-45 is a component of muscle thick filaments and colocalizes with myosin heavy chain B, but not myosin heavy chain A. J Cell Biol 148:375–384

    Article  CAS  Google Scholar 

  • Ardizzi JP, Epstein HF (1987) Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans. J Cell Biol 105:2763–2770

    Article  CAS  Google Scholar 

  • Atkinson SJ, Stewart M (1991) Expression in Escherichia coli of fragments of the coiled-coil rod domain of rabbit myosin: influence of different regions of the molecule on aggregation and paracrystal formation. J Cell Sci 99:823–836

    Article  CAS  Google Scholar 

  • Balasubramanian MK, McCollum D, Chang L et al (1998) Isolation and characterization of new fission yeast cytokinesis mutants. Genetics 149:1265–1275

    Article  CAS  Google Scholar 

  • Barral JM, Bauer CC, Ortiz I et al (1998) Unc-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly. J Cell Biol 143(5):1215–1225

    Article  CAS  Google Scholar 

  • Barral JM, Hutagalung AH, Brinker A et al (2002) Role of myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671

    Article  CAS  Google Scholar 

  • Bazzaro M, Santillan A, Lin Z et al (2007) Myosin II co-chaperone general cell UNC-45 overexpression is associated with ovarian cancer, rapid proliferation, and motility. Am J Pathol 171(15):1640–1649

    Article  CAS  Google Scholar 

  • Bernick EP, Zhang PJ, Du S (2010) Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos. BMC Cell Biol 11:70

    Article  Google Scholar 

  • Berteaux-Lecellier V, Zickler D, Debuchy R et al (1998) A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J 17:1248–1258

    Article  CAS  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:932–939

    Article  CAS  Google Scholar 

  • Bookwalter CS, Kelsen A, Leung JM et al (2014) A toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J Biol Chem 289(44):30832–30841

    Article  CAS  Google Scholar 

  • Bookwalter CS, Tay CL, McCrorie R et al (2017) Reconstitution of the core of the malaria parasite glideosome with recombinant Plasmodium class XIV myosin A and Plasmodium actin. J Biol Chem 292(47):19290–19303

    Article  CAS  Google Scholar 

  • Bujalowski PJ, Nicholls P, Oberhauser AF (2014) UNC-45B chaperone: the role of its domains in the interaction with the myosin motor domain. Biophys J 107:654–661

    Article  CAS  Google Scholar 

  • Bujalowski PJ, Nicholls P, Barral JM et al (2015) Thermally-induced structural changes in an armadillo repeat protein suggest a novel thermosensor mechanism in a molecular chaperone. FEBS Lett 589(1):123–130

    Article  CAS  Google Scholar 

  • Bujalowski PJ, Nicholls P, Garza E et al (2018) The central domain of UNC-45 chaperone inhibits the myosin power stroke. FEBS Open Bio 8:41–48

    Article  CAS  Google Scholar 

  • Chadli A, Graham JD, Abel MG et al (2006) GCUNC-45 is a novel regulator for the progesterone receptor/hsp90 chaperoning pathway. Mol Cell Biol 26(5):1772–1730

    Article  Google Scholar 

  • Chadli A, Felts SJ, Toft DO (2008) GCUNC45 is the first Hsp90 co-chaperone to show alpha/beta isoform specificity. J Biol Chem 283(15):9509–9512

    Article  CAS  Google Scholar 

  • Chen D, Li S, Singh R et al (2012) Dual function of the UNC-45b chaperone with myosin and GATA-4 in cardiac development. J Cell Sci 125(Pt 16):3893–3903

    CAS  Google Scholar 

  • Chow D, Srikakulam R, Chen Y et al (2002) Folding of the striated muscle myosin motor domain. J Biol Chem 277:36799–36807

    Article  CAS  Google Scholar 

  • Comyn SA, Pilgrim D (2012) Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 7(11):e48861

    Article  CAS  Google Scholar 

  • Dafsari HS, Kocaturk NM, Daimagüler HS (2019) Bi-allelic mutations in uncoordinated mutant number-45 myosin chaperone B are a cause for congenital myopathy. Acta Neuropathol Commun 7(1):211. https://doi.org/10.1186/s40478-019-0869-1

    Article  CAS  Google Scholar 

  • Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5, implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    Article  CAS  Google Scholar 

  • Donkervoort S, Kutzner CE, Hu Y et al (2020) Pathogenic variants in the myosin chaperone UNC-45B cause progressive myopathy with eccentric cores. Am J Hum Genet 107:1078–1095

    Article  CAS  Google Scholar 

  • Du SJ, Li H, Bian Y et al (2008) Heat-shock protein 90alpha1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 105(2):554–559

    Article  CAS  Google Scholar 

  • Echeverría PC, Briand PA, Picard D (2016) A remodeled Hsp90 molecular chaperone ensemble with the novel Cochaperone Aarsd1 is required for muscle differentiation. Mol Cell Biol 36(8):1310–1321

    Article  Google Scholar 

  • Eisa NH, Jilani Y, Kainth K et al (2019) The co-chaperone UNC45A is essential for the expression of mitotic kinase NEK7 and tumorigenesis. J Biol Chem 294(14):5246–5260

    Article  CAS  Google Scholar 

  • Epping MT, Mejer LA, Bos JL et al (2009) UNC45A confers resistance to histone deacetylase inhibitors and retinoic acid. Mol Cancer Res 7(11):1861–1870

    Article  CAS  Google Scholar 

  • Epstein HF, Thomson JN (1974) Temperature-sensitive mutation affecting myofilament assembly in Caenorhabditis elegans. Nature 250:579–580

    Article  CAS  Google Scholar 

  • Etard C, Roostalu U, Strahle U (2008) Shuttling of the chaperone Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180(6):1163–1175

    Article  CAS  Google Scholar 

  • Etard C, Roostalu U, Strahle U (2010) Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J Cell Biol 189(3):527–539

    Article  CAS  Google Scholar 

  • Etard C, Armant O, Roostalu U et al (2015) Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 16:267

    Article  Google Scholar 

  • Fratev F, Osk Jonsdottir S, Pajeva I (2013) Structural insight into the UNC-45-myosin complex. Proteins 81(7):1212–1221

    Article  CAS  Google Scholar 

  • Frénal K, Jacot D, Hammoudi PM et al (2017) Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat Commun 8:15710

    Article  Google Scholar 

  • Frumkin A, Dror S, Pokrzywa W et al (2014) Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans. Front Mol Biosci 1:21

    Article  Google Scholar 

  • Gaiser AM, Kaiser CJ, Haslbeck V et al (2011) Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 6(9):e25485

    Article  CAS  Google Scholar 

  • Gazda L, Pokrzywa W, Hellerschmied D et al (2013) The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 152(1–2):183–195

    Article  CAS  Google Scholar 

  • Gaziova I, Moncrief T, Christian CJ et al (2020) Mutational analysis of the structure and function of the chaperoning domain of UNC-45B. Biophys J 119:780–791

    Article  CAS  Google Scholar 

  • Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:75

    Article  Google Scholar 

  • Gomez-Escalante S, Piper PW, Millson SH (2017) Mutation of the Ser18 phosphorylation site on the sole Saccharomyces cerevisiae UCS protein, She4, can compromise high-temperature survival. Cell Stress Chaperones 22(1):135–141

    Article  CAS  Google Scholar 

  • Guo S, Kemphues KJ (1996) A nonmuscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382:455–458

    Article  CAS  Google Scholar 

  • Guo W, Chen D, Fan Z et al (2011) Differential turnover of myosin chaperone UNC-45A isoforms increases in metastatic human breast cancer. J Mol Biol 412(3):365–378

    Article  CAS  Google Scholar 

  • Habicht J, Mooneyham A, Shetty M et al (2019) UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biol Ther 20(10):1304–1313

    Article  CAS  Google Scholar 

  • Habicht J, Mooneyham A, Hoshino A et al (2021) UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 134(1):jcs248815. https://doi.org/10.1242/jcs.248815

    Article  CAS  Google Scholar 

  • Hansen L, Comyn S, Mang Y et al (2014) The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 22:1290. https://doi.org/10.1038/ejhg.2014.21

    Article  CAS  Google Scholar 

  • Haslbeck V, Eckl JM, Kaiser CJ et al (2013) Chaperone-interacting TPR proteins in Caenorhabditis elegans. J Mol Biol 425(16):2922–2939

    Article  CAS  Google Scholar 

  • Hellerschmied D, Clausen T (2014) Myosin chaperones. Curr Opin Struct Biol 25:9–15

    Article  CAS  Google Scholar 

  • Hellerschmied D, Lehner A, Franicevic N et al (2019) Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Nat Commun 10:4781–4793

    Article  Google Scholar 

  • Hoppe T, Cassata G, Barral JM et al (2004) Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118(3):337–349

    Article  CAS  Google Scholar 

  • Hutagalung AH, Landsverk ML, Price MG et al (2002) The UCS family of myosin chaperones. J Cell Sci 115:3983–3990

    Article  CAS  Google Scholar 

  • Iizuka Y, Cichocki F, Sieben A et al (2015) UNC-45A is a nonmuscle myosin IIA chaperone required for NK cell cytotoxicity via control of lytic granule secretion. J Immunol 195(10):4760–4770

    Article  CAS  Google Scholar 

  • Iizuka Y, Mooneyham A, Sieben A et al (2017) UNC-45A is required for neurite extension via controlling NMII activation. Mol Biol Cell 28(10):1337–1346

    Article  CAS  Google Scholar 

  • Janiesch PC, Kim J, Mouysset J et al (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9(4):379–390

    Article  CAS  Google Scholar 

  • Jansen RP, Dowzer C, Michaelis C et al (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84:651–654

    Article  Google Scholar 

  • Kachur T, Ao W, Berger J et al (2004) Maternal UNC-45 is involved in cytokinesis and colocalizes with nonmuscle myosin in the early Caenorhabditis elegans embryo. J Cell Sci 117:5313–5321

    Article  CAS  Google Scholar 

  • Kachur TM, Audhya A, Pilgrim DB (2008) UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Dev Biol 314(2):287–299

    Article  CAS  Google Scholar 

  • Kaiser CM, Bujalowski PJ, Ma L et al (2012) Tracking UNC-45 chaperone-myosin interaction with a titin mechanical reporter. Biophys J 102(9):2212–2219

    Article  CAS  Google Scholar 

  • Kinose F, Wang SX, Kidambi US (1996) Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. J Cell Biol 134:895–909

    Article  CAS  Google Scholar 

  • Kuczmarski ER, Spudich JA (1980) Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci U S A 77:7292–7296

    Article  CAS  Google Scholar 

  • Landsverk ML, Epstein HF (2005) Genetic analysis of myosin II assembly and organization in model organisms. Cell Mol Life Sci 62:2270–2282

    Article  CAS  Google Scholar 

  • Landsverk ML, Li S, Hutagalung AH et al (2007) The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans. J Cell Biol 177(2):205–210

    Article  CAS  Google Scholar 

  • Lee CF, Hauenstein AV, Fleming JK et al (2011a) X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster. Structure 19(3):397–408

    Article  CAS  Google Scholar 

  • Lee CF, Melkani GC, Yu Q et al (2011b) Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 124(Pt 5):699–705

    Article  CAS  Google Scholar 

  • Lehtimäki JI, Fenix AM, Kotila TM et al (2017) UNC-45a promotes myosin folding and stress fiber assembly. J Cell Biol 216(12):4053–4072

    Article  Google Scholar 

  • Liu L, Srikakulam R, Winklemann DA (2008) UNC45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chem 283(19):13185–13193

    Article  CAS  Google Scholar 

  • Lord M, Pollard TD (2004) UCS proteins Rng3p activates actin filament gliding by fission yeast myosin-II. J Cell Biol 167(2):315–325

    Article  CAS  Google Scholar 

  • Lord M, Sladewski TE, Pollard TD (2008) Yeast UCS proteins promote actomyosin interactions and limit myosin turnover in cells. Proc Natl Acad Sci U S A 105(23):8014–8019

    Article  CAS  Google Scholar 

  • McLachlan AD, Karn J (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299:226–231

    Article  CAS  Google Scholar 

  • McNally EM, Goodwin EB, Spudich JA et al (1988) Coexpression and assembly of myosin heavy chain and myosin light chain in Escherichia coli. Proc Natl Acad Sci 85:7270–7273

    Article  CAS  Google Scholar 

  • Melkani GC, Lee CF, Cammarato A et al (2010) Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase. Biochem Biophys Res Commun 396(2):317–322

    Article  CAS  Google Scholar 

  • Melkani GC, Bodmer R, Ocorr K et al (2011) The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model. PLoS One 6(7):e22579

    Article  CAS  Google Scholar 

  • Melkani GC, Trujillo AS, Ramos R et al (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 9(12):e1004024

    Article  Google Scholar 

  • Miller DM, Ortiz I, Berliner GC et al (1983) Differential localization of two myosins within nematode thick filaments. Cell 34:477–490

    Article  CAS  Google Scholar 

  • Millson SH, Truman AW, King V et al (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4:849–860

    Article  CAS  Google Scholar 

  • Mishra M, D’souza VM, Chang KC et al (2005) Hsp90 protein in fission yeast Swo1p and UCS protein Rng3p facilitate myosin II assembly and function. Eukaryote Cell 4:567–576

    Article  CAS  Google Scholar 

  • Mitchell EJ, Karn J, Brown DM et al (1989) Regulatory and essential light-chain-binding sites in myosin heavy chain subfragment-1 mapped by site-directed mutagenesis. J Mol Biol 208:199–125

    Article  CAS  Google Scholar 

  • Molkentin JD, Kalvakolanu DV, Markham BE (1994) Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 14(7):4947–4957

    CAS  Google Scholar 

  • Mooneyham A, Iizuka Y, Yang Q et al (2019) UNC-45A is a novel microtubule-associated protein and regulator of paclitaxel sensitivity in ovarian cancer cells. Mol Cancer Res 17(2):370–383

    Article  CAS  Google Scholar 

  • Myhre JL, Hills JA, Jean F et al (2014) Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish. Dev Biol 390(1):26–40

    Article  CAS  Google Scholar 

  • Ni W, Odunuga OO (2015) UCS proteins: chaperones for myosin and co-chaperone for Hsp90. In: Blatch GL, Edkins AL (eds) The networking of chaperones by co-chaperones. Springer, New York

    Google Scholar 

  • Ni W, Hutagalung AH, Li S et al (2011) The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans. J Cell Sci 124(Pt 18):3164–3173

    Article  CAS  Google Scholar 

  • Nicholls P, Bujalowski PJ, Epstein HF et al (2014) Chaperone-mediated reversible inhibition of the sarcomeric myosin power stroke. FEBS Lett 588:3977–3981

    Article  CAS  Google Scholar 

  • Odunuga O, Anderson M (2021) Investigating the interaction of GATA-4 with the myosin chaperone, striated muscle UNC-45. FASEB J 35(S1). https://doi.org/10.1096/fasebj.2021.35.S1.02556

  • Odunuga OO, Epstein HF (2007) UNC-45: a chaperone for myosin and a co-chaperone for Hsp90. In: Blatch GL (ed) Networking of chaperones by co-chaperones. Springer, New York

    Google Scholar 

  • Peifer M, Berg S, Ryenolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76(5):789–791

    Article  CAS  Google Scholar 

  • Pokrzywa W, Hoppe T (2013) Chaperoning myosin assembly in muscle formation and aging. Worm 2(3):e25644. https://doi.org/10.4161/worm.25644

    Article  Google Scholar 

  • Price MG, Landsverk ML, Barral JM et al (2002) Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific functions. J Cell Sci 115:4013–4023

    Article  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K et al (1993a) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M et al (1993b) Structure of the actin-myosin complex and its implication for muscle contraction. Science 261:58–65

    Article  CAS  Google Scholar 

  • Saraswat LD, Lowey S (1991) Engineered cysteine mutants of myosin light chain 2: fluorescent analogues for structural studies. J Biol Chem 266:19777–19785

    Article  CAS  Google Scholar 

  • Schachat F, Harris HE, Epstein HF (1977) Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans. Cell 10:721–728

    Article  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  Google Scholar 

  • Shi H, Blobel G (2010) UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region. Proc Natl Acad Sci U S A 107(50):21382–21387

    Article  CAS  Google Scholar 

  • Short B (2017) UNC-45a helps cells manage their stress levels. J Cell Biol 216(12):3887

    Article  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317

    Article  CAS  Google Scholar 

  • Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperone. J Biol Chem 274:27265–27273

    Article  CAS  Google Scholar 

  • Srikakulam R, Winklemann DA (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. J Cell Sci 117:641–652

    Article  CAS  Google Scholar 

  • Srikakulam R, Liu L, Winkelmann DA (2008) UNC45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 3(5):e2137

    Article  Google Scholar 

  • Stark BC, James ML, Pollard LW (2013) UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. PLoS One 8(11):e79593

    Article  Google Scholar 

  • Sweeney HL, Rosenfeld SS, Brown F et al (1998) Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem 273:6262–6270

    Article  CAS  Google Scholar 

  • Toi H, Fujimura-Kamada K, Irie K et al (2003) She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae. Mol Biol Cell 14:2237–2249

    Article  CAS  Google Scholar 

  • Trybus KM (1994) Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J Biol Chem 269:20819–20822

    Article  CAS  Google Scholar 

  • Venolia L, Waterston RH (1990) The unc-45 gene of Caenorhabditis elegans is an essential muscle-affecting gene with maternal expression. Genetics 126:345–353

    Article  CAS  Google Scholar 

  • Venolia L, Ao W, Kim S et al (1999) Unc-45 gene of Caenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. Cell Mot Cytoskeleton 42:163–177

    Article  CAS  Google Scholar 

  • Wang F, Chen L, Arcucci O et al (2000) Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem 275:4329–4335

    Article  CAS  Google Scholar 

  • Waterston RH (1988) Muscle. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor, New York

    Google Scholar 

  • Waterston RH (1989) The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J 8:3429–3436

    Article  CAS  Google Scholar 

  • Waterston RH, Thomson JN, Brenner S (1980) Mutants with altered muscle structure in Caenorhabditis elegans. Dev Biol 77:271–302

    Article  CAS  Google Scholar 

  • Wendland B, McCaffrey JM, Xiao Q et al (1996) A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol 135:1485–1500

    Article  CAS  Google Scholar 

  • Wesche S, Arnold M, Jansen RP (2003) The UCS domain protein She4p binds to myosin motor domains and is essential for class I and class V myosin function. Curr Biol 13:715–724

    Article  CAS  Google Scholar 

  • Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 303(2):483–492

    Article  CAS  Google Scholar 

  • Wong KCY, Naqvi NI, Lino Y et al (2000) Fission yeast Rng3p: an UCS-domain protein that mediates myosin II assembly during cytokinesis. J Cell Sci 113:2421–2432

    Article  CAS  Google Scholar 

  • Wong KCY, D’souza VM, Naqvi NI et al (2002) Importance of a myosin II-containing progenitor for actomyosin ring assembly in fission yeast. Curr Biol 12:724–729

    Article  CAS  Google Scholar 

  • Young JC, Barral JM, Hartl FU (2003) More than unfolding: localized functions of cytosolic chaperones. TIBS 28:541–547

    CAS  Google Scholar 

  • Yu QI, Bernstein SI (2003) UCS proteins: managing the myosin. Curr Biol 13:525–527

    Article  Google Scholar 

  • Yu Q, Hipolito LC, Kronert WA et al (2003) Characterization and functional analysis of the Drosophila melanogaster unc-45 (dunc-45) gene. Mol Biol Cell 14:45

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. Hellerschmied and Clausen for providing the original copies of Fig. 7.2 (without the insert) and 3. Texts and figures from the second edition of this book were used with permission from Springer Nature: The Networking of Chaperones by Co-chaperones, UCS Proteins: Chaperones for Myosin and Co-chaperone for Hsp90, 2015, pages 133–152, Weiming Ni and Odutayo O. Odunuga. A. Oberhauser acknowledges support from the National Institutes of Health, grant R01GM118534.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Odutayo O. Odunuga or Andres F. Oberhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odunuga, O.O., Oberhauser, A.F. (2023). Beyond Chaperoning: UCS Proteins Emerge as Regulators of Myosin-Mediated Cellular Processes. In: Edkins, A.L., Blatch, G.L. (eds) The Networking of Chaperones by Co-Chaperones. Subcellular Biochemistry, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-031-14740-1_7

Download citation

Publish with us

Policies and ethics