Skip to main content

Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target

  • Chapter
  • First Online:
  • 396 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1393))

Abstract

Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aigner S et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12(12):1241–1251

    Article  CAS  Google Scholar 

  • Aithal A et al (2018) Development and characterization of carboxy-terminus specific monoclonal antibodies for understanding MUC16 cleavage in human ovarian cancer. PLoS One 13(4):e0193907

    Article  Google Scholar 

  • Akella NM et al (2020) O-GlcNAc transferase regulates cancer stem-like potential of breast cancer cells. Mol Cancer Res 18(4):585–598

    Article  CAS  Google Scholar 

  • Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  Google Scholar 

  • Alisson-Silva F et al (2014) Evidences for the involvement of cell surface glycans in stem cell pluripotency and differentiation. Glycobiology 24(5):458–468

    Article  CAS  Google Scholar 

  • Allam H et al (2017) The glycosyltransferase GnT-III activates Notch signaling and drives stem cell expansion to promote the growth and invasion of ovarian cancer. J Biol Chem 292(39):16351–16359

    Article  CAS  Google Scholar 

  • Askan G, et al (2021) Pancreatic cancer stem cells may define tumor stroma characteristics and recurrence patterns in pancreatic ductal adenocarcinoma. BMC Cancer 21(1)

    Google Scholar 

  • Auffinger B et al (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Diff 21(7):1119–1131

    Article  CAS  Google Scholar 

  • Bagshawe KD, Currie GA (1968) Immunogenicity of L 1210 murine leukaemia cells after treatment with neuraminidase. Nature 218(5148):1254–1255

    Article  CAS  Google Scholar 

  • Bao S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    Article  CAS  Google Scholar 

  • Barkal AA et al (2019) CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572(7769):392–396

    Article  CAS  Google Scholar 

  • Barkeer S et al (2018) Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer 18(1):1157

    Article  CAS  Google Scholar 

  • Barkeer S et al (2018) Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia 20(8):813–825

    Article  CAS  Google Scholar 

  • Bartolazzi A et al (1996) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. J Cell Biol 132(6):1199–1208

    Article  CAS  Google Scholar 

  • Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134

    Article  CAS  Google Scholar 

  • Boitard M et al (2015) Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex. Cell Rep 10(8):1349–1361

    Article  CAS  Google Scholar 

  • Bull C et al (2018) Sialic acid blockade suppresses tumor growth by enhancing T-cell-mediated tumor immunity. Cancer Res 78(13):3574–3588

    Article  CAS  Google Scholar 

  • Chang WH, Lai AG (2019) Aberrations in Notch-Hedgehog signalling reveal cancer stem cells harbouring conserved oncogenic properties associated with hypoxia and immunoevasion. Br J Cancer 121(8):666–678

    Article  CAS  Google Scholar 

  • Chen Y et al (2012) CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 8(7):992–1004

    Article  CAS  Google Scholar 

  • Chen Y et al (2018) A novel monoclonal antibody KMP1 has potential antitumor activity of bladder cancer by blocking CD44 in vivo and in vitro. Cancer Med 7(5):2064–2077

    Article  CAS  Google Scholar 

  • Chen K et al (2020) A positive feedback loop between Wnt/β-catenin signaling and hTERT regulates the cancer stem cell-like traits in radioresistant nasopharyngeal carcinoma cells. J Cell Biochem 121(11):4612–4622

    Article  CAS  Google Scholar 

  • Clara JA et al (2020) Targeting signalling pathways and the immune microenvironment of cancer stem cells—a clinical update. Nat Rev Clin Oncol 17(4):204–232

    Article  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7(4):255–266

    Article  CAS  Google Scholar 

  • Cui H et al (2018) The glycosyltransferase ST6Gal-I is enriched in cancer stem-like cells in colorectal carcinoma and contributes to their chemo-resistance. Clin Transl Oncol 20(9):1175–1184

    Article  CAS  Google Scholar 

  • Curry JM et al (2013) The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J Surg Oncol 107(7):713–722

    Article  CAS  Google Scholar 

  • Das S, Batra SK (2015) Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Res 75(22):4669–4674

    Article  CAS  Google Scholar 

  • Das S et al (2015) Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget 6(8):5772–5787

    Article  Google Scholar 

  • Day BW et al (2019) The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathol 138(6):1033–1052

    Article  CAS  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  CAS  Google Scholar 

  • Deonarain MP, Kousparou CA, Epenetos AA (2009) Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1(1):12–25

    Article  Google Scholar 

  • Di Carlo C, Brandi J, Cecconi D (2018) Pancreatic cancer stem cells: perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J Stem Cells 10(11):172–182

    Article  Google Scholar 

  • Dirkse A et al (2019) Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun 10(1):1787

    Article  Google Scholar 

  • Dobie C, Skropeta D (2020) Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 124(1):76–90

    Article  Google Scholar 

  • Dorsett KA et al (2019) Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 12(1):93

    Article  Google Scholar 

  • Dorsett KA et al (2021) Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 31(5):530–539

    Article  CAS  Google Scholar 

  • Dreesen O, Brivanlou AH (2007) Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3(1):7–17

    Article  CAS  Google Scholar 

  • Du J et al (2015) Dynamic sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to mesenchymal transition. J Biol Chem 290(19):12000–12013

    Article  CAS  Google Scholar 

  • Dubrovska A et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273

    Article  CAS  Google Scholar 

  • Eavarone DA et al (2018) Humanized anti-Sialyl-Tn antibodies for the treatment of ovarian carcinoma. PLoS One 13(7):e0201314

    Article  Google Scholar 

  • Ernst B, Magnani JL (2009) From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 8(8):661–677

    Article  CAS  Google Scholar 

  • Espinoza I et al (2013) Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 6:1249–1259

    Google Scholar 

  • Fattore L, Mancini R, Ciliberto G (2020) Cancer stem cells and the slow cycling phenotype: how to cut the gordian knot driving resistance to therapy in melanoma. Cancers 12(11)

    Google Scholar 

  • Festuccia C, et al (2019) Dual CXCR4 and E-Selectin inhibitor, GMI-1359, shows anti-bone metastatic effects and synergizes with docetaxel in prostate cancer cell intraosseous growth. Cells 9(1)

    Google Scholar 

  • Freire-de-Lima L et al (2011) Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci U S A 108(43):17690–17695

    Article  CAS  Google Scholar 

  • Friederichs J et al (2000) The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells. Cancer Res 60(23):6714–6722

    CAS  Google Scholar 

  • Friedmann-Morvinski D (2014) Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog 19(5):327–336

    Article  Google Scholar 

  • Fuxe J, et al (2012) Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration. PLoS One 7(7)

    Google Scholar 

  • Ganguly K et al (2021) Secretory mucin 5AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Res 81(1):91–102

    Article  CAS  Google Scholar 

  • Gao MQ et al (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29(18):2672–2680

    Article  CAS  Google Scholar 

  • Gao HL et al (2020) Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp Hematol Oncol 9:28

    Article  Google Scholar 

  • Gargini R et al (2015) Cancer stem cell-like phenotype and survival are coordinately regulated by Akt/FoxO/Bim pathway. Stem Cells 33(3):646–660

    Article  CAS  Google Scholar 

  • Gargini R et al (2016) WIP drives tumor progression through YAP/TAZ-dependent autonomous cell growth. Cell Rep 17(8):1962–1977

    Article  CAS  Google Scholar 

  • Gilad N et al (2019) The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget 10(52):5480–5491

    Article  Google Scholar 

  • Gray MA et al (2020) Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol 16(12):1376–1384

    Article  CAS  Google Scholar 

  • Guo H, Nagy T, Pierce M (2014) Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apcmin/+ Mice through altered Wnt receptor signaling. J Biol Chem 289(45):31534–31549

    Article  CAS  Google Scholar 

  • Gupta V et al (2012) Ceramide glycosylation by glucosylceramide synthase selectively maintains the properties of breast cancer stem cells. J Biol Chem 287(44):37195–37205

    Article  CAS  Google Scholar 

  • Haas Q et al (2019) Siglec-9 regulates an effector memory CD8+ T-cell subset that congregates in the melanoma tumor microenvironment. Cancer Immunol Res 7(5):707–718

    Article  CAS  Google Scholar 

  • Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56(23):5309–5318

    CAS  Google Scholar 

  • Ham SY et al (2016) Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis 5:e185

    Article  CAS  Google Scholar 

  • Hamilton KL et al (2021) Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways. J Cancer Res Clin Oncol 147(2):445–457

    Article  CAS  Google Scholar 

  • Harbeck N et al (2019) Breast cancer. Nat Rev Dis Prim 5(1):66

    Article  Google Scholar 

  • Hedlund M et al (2008) α2-6–linked sialic acids on N-Glycans modulate carcinoma differentiation In vivo. Cancer Res 68(2):388–394

    Article  CAS  Google Scholar 

  • Henry MD, Campbell KP (1998) A role for dystroglycan in basement membrane assembly. Cell 95(6):859–870

    Article  CAS  Google Scholar 

  • Hermann PC et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–23

    Article  CAS  Google Scholar 

  • Herrmann M, et al (2014) CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res 13(3 Pt A): 465–477

    Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60

    Article  CAS  Google Scholar 

  • Hsu JM et al (2018) STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun 9(1):1908

    Article  Google Scholar 

  • Huanna T et al (2015) GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7. Mol Carcinog 54(10):1159–1171

    Article  Google Scholar 

  • Ishii H et al (2021) Isolation and characterization of cancer stem cells derived from human glioblastoma. Am J Cancer Res 11(2):441–457

    CAS  Google Scholar 

  • Ishiwata T et al (2018) Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 24(4):797–805

    Article  CAS  Google Scholar 

  • Jamal SME et al (2020) Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways. Oncogene 39(32):5468–5478

    Article  CAS  Google Scholar 

  • Jang GB et al (2015) Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype. Sci Rep 5:12465

    Article  Google Scholar 

  • Jung E et al (2021) Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun 12(1):1014

    Article  CAS  Google Scholar 

  • Katoh Y, Katoh M (2007) Comparative genomics on PROM1 gene encoding stem cell marker CD133. Int J Mol Med 19(6):967–970

    CAS  Google Scholar 

  • Khan T et al (2020) Structural control of boronic acid ligands enhances intratumoral targeting of sialic acid to eradicate cancer stem-like cells. ACS Appl Bio Mater 3(8):5030–5039

    Article  CAS  Google Scholar 

  • Komatsu M, Yee L, Carraway KL (1999) Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res 59(9):2229–2236

    CAS  Google Scholar 

  • Komatsu M et al (2001) Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20(4):461–470

    Article  CAS  Google Scholar 

  • Kristiansen G et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913

    CAS  Google Scholar 

  • Kumar S et al (2019) Estrogen-dependent DLL1-mediated Notch signaling promotes luminal breast cancer. Oncogene 38(12):2092–2107

    Article  CAS  Google Scholar 

  • Lambert AW, Weinberg RA (2021) Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer 21(5):325–338

    Article  CAS  Google Scholar 

  • Lanctot PM, Gage FH, Varki AP (2007) The glycans of stem cells. Curr Opin Chem Biol 11(4):373–380

    Article  CAS  Google Scholar 

  • Lauko A et al (2022) Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 82:162–175

    Article  CAS  Google Scholar 

  • Lee SH et al (2016) Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Lab Invest 96(5):508–516

    Article  CAS  Google Scholar 

  • Lehnus KS et al (2013) CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells. Int J Oncol 42(3):1011–1017

    Article  CAS  Google Scholar 

  • Leon F et al (2022) Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene 41(1):57–71

    Article  CAS  Google Scholar 

  • Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  Google Scholar 

  • Li CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  Google Scholar 

  • Li C et al (2016) GALNT1-mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Res 76(5):1273–1283

    Article  CAS  Google Scholar 

  • Li N et al (2019) An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis 8(3):13

    Article  CAS  Google Scholar 

  • Li J et al (2021) Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 223:107800

    Article  CAS  Google Scholar 

  • Li W et al (2017) Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 7(1)

    Google Scholar 

  • Liu Y et al (2015) Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget 6(24):20650–20660

    Article  Google Scholar 

  • Liu X et al (2017) Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells. Biol Chem 398(10):1119–1126

    Article  CAS  Google Scholar 

  • Liu X et al (2019) Deglycosylation of epithelial cell adhesion molecule affects epithelial to mesenchymal transition in breast cancer cells. J Cell Physiol 234(4):4504–4514

    Article  CAS  Google Scholar 

  • Liu C et al (2020) GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging 12(12):11794–11811

    Article  CAS  Google Scholar 

  • Liu Y, et al (2018) O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death Dis 9(5)

    Google Scholar 

  • Lucena MC et al (2016) Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J Biol Chem 291(25):12917–12929

    Article  CAS  Google Scholar 

  • Lüönd F, Tiede S, Christofori G (2021) Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 125(2):164–175

    Article  Google Scholar 

  • Ma Q, et al (2018) Cancer stem cells and immunosuppressive microenvironment in glioma. Front Immunol 9

    Google Scholar 

  • Maetzel D et al (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11(2):162–171

    Article  CAS  Google Scholar 

  • Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296

    Article  CAS  Google Scholar 

  • Maisel D et al (2016) Targeting tumor cells with Anti-CD44 antibody triggers macrophage-mediated immune modulatory effects in a cancer xenograft model. PLoS One 11(7):e0159716

    Article  Google Scholar 

  • Mak AB et al (2011) CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J Biol Chem 286(47):41046–41056

    Article  CAS  Google Scholar 

  • Marhuenda E, et al (2021) Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J Exp Clin Cancer Res 40(1)

    Google Scholar 

  • Martin GR, Jain RK (1994) Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 54(21):5670–5674

    CAS  Google Scholar 

  • Mereiter S et al (2019) Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell 36(1):6–16

    Article  CAS  Google Scholar 

  • Mimeault M et al (2010) MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Lett 295(1):69–84

    Article  CAS  Google Scholar 

  • Miranda A et al (2019) Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A 116(18):9020–9029

    Article  CAS  Google Scholar 

  • Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281(46):34936–34941

    Article  CAS  Google Scholar 

  • Miyazaki T et al (2021) Boronic acid ligands can target multiple subpopulations of pancreatic cancer stem cells via pH-dependent glycan-terminal sialic acid recognition. ACS Appl Bio Mater 4(9):6647–6651

    Article  CAS  Google Scholar 

  • Momi N et al (2012) Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 32(11):1384–1395

    Article  Google Scholar 

  • Munz M et al (2008) Glycosylation is crucial for stability of tumour and cancer stem cell antigen EpCAM. Front Biosci 13:5195–201

    Article  CAS  Google Scholar 

  • Muz B et al (2019) Inhibition of E-Selectin (GMI-1271) or E-selectin together with CXCR4 (GMI-1359) re-sensitizes multiple myeloma to therapy. Blood Cancer J 9(9):68

    Article  Google Scholar 

  • Nagasundaram M, Horstkorte R, Gnanapragassam VS (2020) Sialic acid metabolic engineering of breast cancer cells interferes with adhesion and migration. Molecules 25(11)

    Google Scholar 

  • Nallasamy P, et al. (2021) Pancreatic tumor microenvironment factor promotes cancer stemness via SPP1-CD44 Axis. Gastroenterology 161(6):1998–2013 e7

    Google Scholar 

  • Neftel C, et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4): 835–849 e21

    Google Scholar 

  • Noman ASM et al (2020) Chemotherapeutic resistance of head and neck squamous cell carcinoma is mediated by EpCAM induction driven by IL-6/p62 associated Nrf2-antioxidant pathway activation. Cell Death Dis 11(8):663

    Article  CAS  Google Scholar 

  • Ogawa T et al (2017) ST6GALNAC1 plays important roles in enhancing cancer stem phenotypes of colorectal cancer via the Akt pathway. Oncotarget 8(68):112550–112564

    Article  Google Scholar 

  • Ooki A et al (2018a) CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer 119(8):961–970

    Article  CAS  Google Scholar 

  • Ooki A et al (2018b) YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res 78(1):168–181

    Article  CAS  Google Scholar 

  • Orth M et al (2019) Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 14(1):141

    Article  Google Scholar 

  • Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9(6):667–676

    Article  CAS  Google Scholar 

  • Overdevest JB et al (2011) CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res 71(11):3802–3811

    Article  CAS  Google Scholar 

  • Pavsic M et al (2014) Crystal structure and its bearing towards an understanding of key biological functions of EpCAM. Nat Commun 5:4764

    Article  CAS  Google Scholar 

  • Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555

    Article  CAS  Google Scholar 

  • Ponnusamy MP et al (2011) MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. J Ovarian Res 4(1):7

    Article  CAS  Google Scholar 

  • Pozza ED et al (2015) Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi-directionally convert into cancer stem cells. Int J Oncol 46(3):1099–1108

    Article  CAS  Google Scholar 

  • Prager BC et al (2020) Glioblastoma stem cells: driving resilience through chaos. Trends Cancer 6(3):223–235

    Article  Google Scholar 

  • Prendergast JM et al (2017) Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs 9(4):615–627

    Article  CAS  Google Scholar 

  • Price-Schiavi SA et al (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99(6):783–791

    Article  CAS  Google Scholar 

  • Prince ME et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978

    Article  CAS  Google Scholar 

  • Quinn HM et al (2021) YAP and beta-catenin cooperate to drive oncogenesis in basal breast cancer. Cancer Res 81(8):2116–2127

    Article  CAS  Google Scholar 

  • Radicioni G et al (2016) The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunol 9(6):1442–1454

    Article  CAS  Google Scholar 

  • Regan JL et al (2017) Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep 21(10):2813–2828

    Article  CAS  Google Scholar 

  • Remmers N et al (2013) Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res 19(8):1981–1993

    Article  CAS  Google Scholar 

  • Rillahan CD et al (2012) Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol 8(7):661–668

    Article  CAS  Google Scholar 

  • Safa AR et al (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis 2(2):152–163

    Article  Google Scholar 

  • Salamone MC et al (2001) Antibodies recognizing CD24 LAP epitope on human T cells enhance CD28 and IL-2 T cell proliferation. J Leukoc Biol 69(2):215–223

    Article  CAS  Google Scholar 

  • Sammar M et al (1997) Mouse CD24 as a signaling molecule for integrin-mediated cell binding: functional and physical association with src-kinases. Biochem Biophys Res Commun 234(2):330–334

    Article  CAS  Google Scholar 

  • Sasaki N, Toyoda M, Ishiwata T (2021) Gangliosides as signaling regulators in cancer. Int J Mol Sci 22(10)

    Google Scholar 

  • Schultz MJ et al (2016) The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res 76(13):3978–3988

    Article  CAS  Google Scholar 

  • Silva IA et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71(11):3991–4001

    Article  CAS  Google Scholar 

  • Singh DK et al (2017) Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma. Cell Rep 18(4):961–976

    Article  CAS  Google Scholar 

  • Sipione S et al (2020) Gangliosides in the brain: physiology pathophysiology and therapeutic applications. Front Neurosci 14:572965

    Article  Google Scholar 

  • Skrypek N et al (2013) The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the concentrative nucleoside transporter family. Oncogene 32(13):1714–1723

    Article  CAS  Google Scholar 

  • Stanczak MA et al (2018) Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest 128(11):4912–4923

    Article  Google Scholar 

  • Starbuck K et al (2018) Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget 9(33):23289–23305

    Article  Google Scholar 

  • Sun X et al (2018) Drug-induced expression of EpCAM contributes to therapy resistance in esophageal adenocarcinoma. Cell Oncol (Dordr) 41(6):651–662

    Article  CAS  Google Scholar 

  • Sun X, et al (2021) C1GALT1 in health and disease (Review). Oncology Lett 22(2)

    Google Scholar 

  • Suzuki O, Abe M, Hashimoto Y (2015) Caspase-dependent drug-induced apoptosis is regulated by cell surface sialylation in human B-cell lymphoma. Oncol Lett 10(2):687–690

    Article  CAS  Google Scholar 

  • Tanabe S et al (2020) Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Front Pharmacol 11:904

    Article  CAS  Google Scholar 

  • Tang X et al (2021) Targeting glioblastoma stem cells: a review on biomarkers, signal pathways and targeted therapy. Front Oncol 11:701291

    Article  Google Scholar 

  • Terao N (2015) Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes. World J Gastroenterol 21(13)

    Google Scholar 

  • Todaro M et al (2014) CD44v6 Is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356

    Article  CAS  Google Scholar 

  • Tomuleasa C et al (2010) Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointestin Liver Dis 19(1):61–67

    Google Scholar 

  • Vajaria BN et al (2016) Sialylation: an avenue to target cancer cells. Pathol Oncol Res 22(3):443–447

    Article  CAS  Google Scholar 

  • Vermeulen L et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476

    Article  CAS  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  CAS  Google Scholar 

  • Wang H et al (2020) Role of CD133 in human embryonic stem cell proliferation and teratoma formation. Stem Cell Res Ther 11(1):208

    Article  CAS  Google Scholar 

  • Wei J et al (2010) Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res: Off J Am Assoc Cancer Res 16(2):461–473

    Article  CAS  Google Scholar 

  • Wei J et al (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9(1):67–78

    Article  CAS  Google Scholar 

  • Xiao H et al (2016) Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci 113(37):10304–10309

    Article  CAS  Google Scholar 

  • Xiao W et al (2017) Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 36(1):41

    Article  Google Scholar 

  • Xu F et al (2020) Quantitative site- and structure-specific N-glycoproteomics characterization of differential N-glycosylation in MCF-7/ADR cancer stem cells. Clin Proteomics 17:3

    Article  CAS  Google Scholar 

  • Yabo YA, Niclou SP, Golebiewska A (2022) Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro Oncol 24(5):669–682

    Article  CAS  Google Scholar 

  • Yadav UP et al (2020) Metabolic adaptations in cancer stem cells. Front Oncol 10:1010

    Article  Google Scholar 

  • Yamashita S et al (2002) Stat3 controls cell movements during zebrafish gastrulation. Dev Cell 2(3):363–375

    Article  CAS  Google Scholar 

  • Yanagisawa M, Yoshimura S, Yu RK (2011) Expression of GD2 and GD3 gangliosides in human embryonic neural stem cells. ASN Neuro 3(2)

    Google Scholar 

  • Yang L et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5(1):8

    Article  Google Scholar 

  • Yeung TM et al (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A 107(8):3722–3727

    Article  CAS  Google Scholar 

  • Yoon C et al (2021) PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis 10(1):12

    Article  CAS  Google Scholar 

  • Yoshikawa M et al (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73(6):1855–1866

    Article  CAS  Google Scholar 

  • Zhang H et al (2015) Relationship of tumor marker CA125 and ovarian tumor stem cells: preliminary identification. J Ovarian Res 8:19

    Article  Google Scholar 

  • Zhang D et al (2017) The role of epithelial cell adhesion molecule N-glycosylation on apoptosis in breast cancer cells. Tumour Biol 39(3):1010428317695973

    Article  Google Scholar 

  • Zhang W et al (2020) Combined blockage of E-selectin and CXCR4 (GMI-1359) enhances anti-leukemia Effect of FLT3 inhibition (Sorafenib) and protects hematopoiesis in pre-clinical AML models. Blood 136(Supplement 1):17–18

    Article  Google Scholar 

  • Zhang D, et al. (2019) Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J Cell Physiol 235(4):3626–3633

    Google Scholar 

  • Zhang X, Powell K, Li L (2020) Breast cancer stem cells: biomarkers, identification and isolation methods, regulating mechanisms, cellular origin, and beyond. Cancers (Basel) 12(12)

    Google Scholar 

  • Zheng J et al (2011) NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression. BMC Cancer 11:251:1–251:9.

    Google Scholar 

  • Zheng Q et al (2020) The breast cancer stem cells traits and drug resistance. Front Pharmacol 11:599965

    Article  CAS  Google Scholar 

  • Zhou F et al (2010) Alpha 2,3-Sialylation regulates the stability of stem cell marker CD133. J Biochem 148(3):273–280

    Article  CAS  Google Scholar 

  • Zhou N et al (2015) Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. Int J Mol Sci 16(6):11966–11982

    Article  CAS  Google Scholar 

  • Zhou L et al (2016) Activation of beta-catenin signaling in CD133-positive dermal papilla cells drives postnatal hair growth. PLoS One 11(7):e0160425

    Article  Google Scholar 

  • Zhou HM et al (2021) Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 6(1):62

    Article  Google Scholar 

  • Zhu R et al (2019) TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun 10(1):2863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio Cabral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quader, S., Tanabe, S., Cabral, H. (2022). Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target. In: Tanabe, S. (eds) Cancer Stem Cell Markers and Related Network Pathways. Advances in Experimental Medicine and Biology, vol 1393. Springer, Cham. https://doi.org/10.1007/978-3-031-12974-2_7

Download citation

Publish with us

Policies and ethics