Skip to main content

Fuzzy Centrality Measures: A Survey

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 505))

Abstract

: Most real-world problems can be pictured as a set of connections and interactions between various entities. Together, these entities create a complex phenomenon investigated in the form of complex networks. Each of the entities in the network plays a particular role in the definition of the structure and the analysis of the studied problem. Several measures of centrality have been proposed in the literature to estimate the contribution and quantify the relevance of network entities. The most influential nodes are defined either locally, via the measurement of their connections with their directly related neighbors, or globally, via the measurement of the importance of their neighbors or their relevance in terms of contribution to the fast propagation of information based on the shortest paths. Due to the incompleteness of real-world data, crisp representations do not adequately describe the problem. Therefore, fuzzy graphs have been proposed to give more realistic representations by taking into account the uncertainties present in data. This paper proposes a state of the art of fuzzy centrality measures with a focus on proposed studies on urban traffic networks.

This work was funded by the CNRST project in the priority areas of scientific research and technological development “Spatio-temporal data warehouse and strategic transport of dangerous goods».

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bavelas, A.: A mathematical model for group structures. Hum. Organ. 7(3), 16–30 (1948)

    Article  Google Scholar 

  2. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)

    Article  Google Scholar 

  3. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  Google Scholar 

  4. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Soc. 2(1), 113–120 (1972)

    Article  Google Scholar 

  5. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23(3), 191–201 (2001)

    Article  Google Scholar 

  6. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007)

    Article  Google Scholar 

  7. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  8. Zadeh, L.A.: Fuzzy sets. In: Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, pp. 394–432 (1996)

    Google Scholar 

  9. Kaufmann, A.: Introduction to the Theory of Fuzzy Sets, vol. 1. Academic Press Inc, Orlando, Florida (1973)

    Google Scholar 

  10. Rosenfeld, A.: Fuzzy graphs, fuzzy sets and their applications. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.), pp. 77–95 (1975)

    Google Scholar 

  11. Magdalena, L.: Fuzzy Rule-Based Systems. In: Springer Handbook of Computational Intelligence, pp. 203–218. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_13

  12. Nair, P.S., Sarasamma, S.T..: Data mining through fuzzy social network analysis. In: NAFIPS 2007–2007 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 251–255. IEEE (2007)

    Google Scholar 

  13. Liao, L.P., Hu, R.J., Zhang, G.Y.: The centrality analysis of fuzzy social networks. Fuzzy Syst. Math. 27(2), 169–173 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Hu, R.J., Li, Q., Zhang, G.Y., Ma, W.C.: Centrality measures in directed fuzzy social networks. Fuzzy Inf. Eng. 7(1), 115–128 (2015)

    Article  MathSciNet  Google Scholar 

  15. Davidsen, S.A., Padmavathamma, M.: A fuzzy closeness centrality using and ness-direction to control degree of closeness. In: 2014 First International Conference on Networks Soft Computing (ICNSC2014), pp. 203–208. IEEE (2014)

    Google Scholar 

  16. Hu, R.J., Zhang, G.Y., Liao, L.P.: The closeness centrality analysis of fuzzy social network based on inversely attenuation factor. In: Cao, B.Y., Nasseri, H. (eds.) Fuzzy Information & Engineering and Operations Research & Management. Advances in Intelligent Systems and Computing, vol. 211, pp. 457–465. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38667-1_46

  17. Hu, R., Liao, L., Chen, C., Zhang, G.: Closeness centrality measures in fuzzy enterprise technology innovation cooperation networks. Fuzzy Inf. Eng. 11(4), 494–505 (2019)

    Article  Google Scholar 

  18. Samanta, S., Pal, M.: A new approach to social networks based on fuzzy graphs. J. Mass Commun. Journal. 5, 078–099 (2014)

    Google Scholar 

  19. Nourian, P., Rezvani, S., Sariyildiz, I. S., Van der Hoeven, F.: Spectral modelling for spatial network analysis. In: Proceedings of the Symposium on Simulation for Architecture and Urban Design, SimAUD (2016)

    Google Scholar 

  20. Tavassoli, S., Zweig, K.A.: Fuzzy centrality evaluation in complex and multiplex networks. In: Gonçalves, B., Menezes, R., Sinatra, R., Zlatic, V. (eds.) Complex Networks VIII, pp. 31–43. CompleNet 2017. Springer Proceedings in Complexity. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54241-6_3

  21. Wen, T., Jiang, W.: Identifying influential nodes based on fuzzy local dimension in complex networks. Chaos Solitons Fractals 119, 332–342 (2019)

    Article  MathSciNet  Google Scholar 

  22. Liao, L.P., Zhang, G.Y.: The centrality analysis of the fuzzy technology innovation network. In: Cao, B.Y., Zhong, Y.B. (eds.) Fuzzy Sets and Operations Research. ICFIE 2017. Advances in Intelligent Systems and Computing, vol. 872, pp. 149–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02777-3_14

  23. Samanta, S., Dubey, V.K., Sarkar, B.: Measure of influences in social networks. Appl. Soft Comput. 99, 106858 (2021)

    Article  Google Scholar 

  24. Wang, Q., Gong, Z.-T.: Structural centrality in fuzzy social networks based on fuzzy hypergraph theory. Comput. Math. Organ. Theory 26(2), 236–254 (2020). https://doi.org/10.1007/s10588-020-09312-x

    Article  Google Scholar 

  25. Zhang, H., Zhong, S., Deng, Y., Cheong, K.H.: LFIC: Identifying influential nodes in complex networks by local fuzzy information centrality. In: IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3112226

  26. Singh, A.K., Purohit, N.: An optimised fuzzy clustering for wireless sensor networks. Int. J. Electron. 101(8), 1027–1041 (2014)

    Article  Google Scholar 

  27. Saheb Nasagh, R., Shahidi, M., Ashtiani, M.: A fuzzy genetic automatic refactoring approach to improve software maintainability and flexibility. Soft. Comput. 25(6), 4295–4325 (2020). https://doi.org/10.1007/s00500-020-05443-0

    Article  Google Scholar 

  28. de Oliveira, S.C., Cobre, J., Pereira, D.F.: A measure of reliability for scientific co-authorship networks using fuzzy logic. Scientometrics 126(6), 4551–4563 (2021). https://doi.org/10.1007/s11192-021-03915-0

    Article  Google Scholar 

  29. Raj, E.D., Babu, L.D., Ariwa, E.: A fuzzy approach to centrality and prestige in online social networks. In: Proceedings of the International Conference on Informatics and Analytics, pp. 1–6 (2016)

    Google Scholar 

  30. Zarghami, S.A., Gunawan, I.: A fuzzy-based vulnerability assessment model for infrastructure networks incorporating reliability and centrality. Eng. Constr. Architect. Manag. 27(3), 725–744 (2020). https://doi.org/10.1108/ECAM-10-2018-0437

  31. Huang, Y.P., Kao, L.J., Tsai, T., Liu, D.: Using fuzzy centrality and intensity concepts to construct an information retrieval model. In: SMC 2003 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), vol. 4, pp. 3257–3262. IEEE (2003)

    Google Scholar 

  32. Jain, A., Lobiyal, D.K.: Fuzzy Hindi WordNet and word sense disambiguation using fuzzy graph connectivity measures. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (TALLIP) 15(2), 1–31 (2015)

    Google Scholar 

  33. Vij, S., Jain, A., Tayal, D., Castillo, O.: Fuzzy logic for inculcating significance of semantic relations in word sense disambiguation using a WordNet graph. Int. J. Fuzzy Syst. 20(2), 444–459 (2018)

    Article  Google Scholar 

  34. Jain, A., Mittal, K., Vaisla, K.S.: FLAKE: Fuzzy graph centrality-based automatic keyword extraction. Comput. J. 65(4), 926–939 (2020). https://doi.org/10.1093/comjnl/bxaa133

  35. Jain, M., et al.: Automatic keyword extraction for localized tweets using fuzzy graph connectivity measures. Multimed. Tools Appl. (2022). https://doi.org/10.1007/s11042-021-11893-x

  36. Joodaki, M., Dowlatshahi, M.B., Joodaki, N.Z.: An ensemble feature selection algorithm based on PageRank centrality and fuzzy logic. Knowl.-Based Syst. 233, 107538 (2021)

    Article  Google Scholar 

  37. Karim, L., Boulmakoul, A., Cherradi, G., Lbath, A.: Fuzzy centrality analysis for smart city trajectories. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 933–940. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_108

    Chapter  Google Scholar 

  38. Boulmakoul, A., Badaoui, F.-E., Karim, L., Lbath, A., Oulad Haj Thami, R.: Fuzzy spatiotemporal centrality for urban resilience. In: Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U. (eds.) INFUS 2021. LNNS, vol. 307, pp. 796–803. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-85626-7_92

    Chapter  Google Scholar 

  39. Badaoui, F.E., Boulmakoul, A., Thami, R.O.H.: Fuzzy dynamic centrality for urban traffic resilience. In: 2021 International Conference on Data Analytics for Business and Industry (ICDABI), pp. 12–16. IEEE, 25–26 October 2021. https://doi.org/10.1109/ICDABI53623.2021.9655939

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azedine Boulmakoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badaoui, Fe. et al. (2022). Fuzzy Centrality Measures: A Survey. In: Kahraman, C., Tolga, A.C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U. (eds) Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems, vol 505. Springer, Cham. https://doi.org/10.1007/978-3-031-09176-6_72

Download citation

Publish with us

Policies and ethics