Skip to main content

Reducing Memory Requirements of Quantum Optimal Control

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13353))

Included in the following conference series:

Abstract

Quantum optimal control problems are typically solved by gradient-based algorithms such as GRAPE, which suffer from exponential growth in storage with increasing number of qubits and linear growth in memory requirements with increasing number of time steps. These memory requirements are a barrier for simulating large models or long time spans. We have created a nonstandard automatic differentiation technique that can compute gradients needed by GRAPE by exploiting the fact that the inverse of a unitary matrix is its conjugate transpose. Our approach significantly reduces the memory requirements for GRAPE, at the cost of a reasonable amount of recomputation. We present benchmark results based on an implementation in JAX.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under the Accelerated Research in Quantum Computing and Applied Mathematics programs, under contract DE-AC02-06CH11357, and by the National Science Foundation Mathematical Sciences Graduate Internship. We gratefully acknowledge the computing resources provided on Bebop and Swing, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2022). https://github.com/sriharikrishna/qoc

  2. Aupy, G., Herrmann, J., Hovland, P., Robert, Y.: Optimal multistage algorithm for adjoint computation. SIAM J. Sci. Comput. 38(3), C232–C255 (2016)

    Article  MathSciNet  Google Scholar 

  3. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18(153), 1–43 (2018). http://jmlr.org/papers/v18/17-468.html

  4. Beaumont, O., Herrmann, J., Pallez, G., Shilova, A.: Optimal memory-aware backpropagation of deep join networks. Phil. Trans. R. Soc. A 378(2166), 20190049 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018). http://github.com/google/jax

  6. Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011). https://doi.org/10.1103/PhysRevA.84.022326

    Article  Google Scholar 

  7. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016)

  8. Cyr, E.C., Shadid, J., Wildey, T.: Towards efficient backward-in-time adjoint computations using data compression techniques. Comput. Meth. Appl. Mech. Eng. 288, 24–44 (2015)

    Article  MathSciNet  Google Scholar 

  9. Doria, P., Calarco, T., Montangero, S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011). https://doi.org/10.1103/PhysRevLett.106.190501

    Article  Google Scholar 

  10. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim. Methods Softw. 1(1), 35–54 (1992)

    Article  Google Scholar 

  11. Griewank, A., Walther, A.: Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Softw. 26(1), 19–45 (2000). https://doi.org/10.1145/347837.347846

    Article  MATH  Google Scholar 

  12. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. No. 105 in Other Titles in Applied Mathematics, 2nd edn. SIAM, Philadelphia (2008). http://bookstore.siam.org/ot105/

  13. Hascoet, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. (TOMS) 39(3), 1–43 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jain, P., et al.: Checkmate: breaking the memory wall with optimal tensor rematerialization. In: Proceedings of Machine Learning and Systems, vol. 2, pp. 497–511 (2020)

    Google Scholar 

  15. Johansson, J., Nation, P., Nori, F.: QuTiP: an open-source python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012). https://doi.org/10.1016/j.cpc.2012.02.021

    Article  Google Scholar 

  16. Johansson, J., Nation, P., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013). https://doi.org/10.1016/j.cpc.2012.11.019

    Article  Google Scholar 

  17. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001). https://doi.org/10.1103/PhysRevA.63.032308

    Article  Google Scholar 

  18. Kubota, K.: A Fortran77 preprocessor for reverse mode automatic differentiation with recursive checkpointing. Optim. Meth. Softw. 10(2), 319–335 (1998). https://doi.org/10.1080/10556789808805717

    Article  MathSciNet  MATH  Google Scholar 

  19. Kukreja, N., Hückelheim, J., Louboutin, M., Washbourne, J., Kelly, P.H., Gorman, G.J.: Lossy checkpoint compression in full waveform inversion. Geoscientific Model Development Discussions, pp. 1–26 (2020)

    Google Scholar 

  20. Leung, N., Abdelhafez, M., Koch, J., Schuster, D.: Speedup for quantum optimal control from automatic differentiation based on graphics processing units. Phys. Rev. A 95, 042318 (2017). https://doi.org/10.1103/PhysRevA.95.042318

    Article  Google Scholar 

  21. Naumann, U.: The Art of Differentiating Computer Programs. Society for Industrial and Applied Mathematics (2011). https://doi.org/10.1137/1.9781611972078

  22. Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., He, Y.: ZeRO-infinity: breaking the GPU memory wall for extreme scale deep learning. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3458817.3476205

  23. Schanen, M., Marin, O., Zhang, H., Anitescu, M.: Asynchronous two-level checkpointing scheme for large-scale adjoints in the spectral-element solver Nek5000. Procedia Comput. Sci. 80(C), 1147–1158 (2016). https://doi.org/10.1016/j.procs.2016.05.444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Propson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Thomas Propson, Marcelo Bongarti and UChicago Argonne, LLC, Operator of Argonne National Laboratory, under exclusive license to Springer Nature Switzerland AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narayanan, S.H.K., Propson, T., Bongarti, M., Hückelheim, J., Hovland, P. (2022). Reducing Memory Requirements of Quantum Optimal Control. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics