Skip to main content

Biological Activity of Selenium in Plants: Physiological and Biochemical Mechanisms of Phytotoxicity and Tolerance

  • Chapter
  • First Online:
Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement

Part of the book series: Sustainable Plant Nutrition in a Changing World ((SPNCW))

  • 580 Accesses

Abstract

Recent studies provide increasing amounts of information on the biological activity of selenium (Se) in plants. Although this element is not essential for plants, it has been classified as a beneficial element due to its documented positive role in some plant species, especially when exposed to stress conditions. However, due to the narrow boundary between its beneficial and phytotoxic concentrations in plant tissues, the biological activity and physiological effects of Se may vary widely, depending not only on plant species but also on the chemical form of this element and the influence of environmental factors. Recent advanced molecular research has significantly contributed to elucidation of the biochemical transformations, impact on physiological processes, and biological action of Se in plants, critically determined by its chemical similarity to sulphur. It has been shown that the differences in the biotransformations of Se determine the possibility of the accumulation and level of Se in plant tissues. The positive role of Se is attributed mainly to the activation of enzymatic and non-enzymatic components of plant antioxidant defence, but it is also related to improved mineral balance and a stimulating effect on the secondary metabolism in plants. In contrast, the phytotoxic effect of Se is associated with the formation of malformed selenoproteins, the occurrence of oxidative/nitrostative stress, disrupted homeostasis of essential nutrients, and/or hormonal imbalance. In this chapter, the mechanisms of Se phytotoxicity and tolerance at the physiological and biochemical level are summarized, taking into account the possibility of biofortification of plants with this beneficial element to improve their nutraceutical potential and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atarodi B, Fotovat A, Khorassani R, Keshavarz P, Hawrylak-Nowak B (2018) Selenium improves physiological responses and nutrient absorption in wheat (Triticum aestivum L.) grown under salinity. Toxicol Environ Chem 100(4):440–451

    Article  CAS  Google Scholar 

  • Aureli F, Ouerdane L, Bierla K, Szpunar J, Prakash NT, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978

    Article  CAS  PubMed  Google Scholar 

  • Baker AV, Pilbeam DJ (2015) Handbook of plant nutrition. CRC Press, Taylor&Francis Group, Boca Raton

    Book  Google Scholar 

  • Balal RM, Shahid MA, Javaid MM, Iqbal Z, Anjum MA, Garcia-Sanchez F, Mattson NS (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38(6):158

    Article  Google Scholar 

  • Bañuelos GS, Stushnoff C, Walse SS, Zuber T, Yang SI, Pickering IJ, Freeman JL (2012) Biofortified, selenium enriched, fruit and cladode from three Opuntia Cactus pear cultivars grown on agricultural drainage sediment for use in nutraceutical foods. Food Chem 135(1):9–16

    Article  Google Scholar 

  • Bañuelos GS, Lin Z-Q, Broadley M (2017) Selenium biofortification. In: Pilon-Smits EAH, Winkel LHE, Lin Z-Q (eds) Selenium in plants. Plant Ecophysiology, Springer, Cham, pp 231–255

    Chapter  Google Scholar 

  • Brown TA, Shrift A (1981) Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiol 67:1951–1953

    Article  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium – toxicity and tolerance in higher-plants. Biol Rev 57:59–84

    Article  CAS  Google Scholar 

  • Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EAH, Dhankher OP, Tripathi RD (2019) Understanding selenium metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Technol 49(21):1937–1958

    Article  CAS  Google Scholar 

  • Chen Y, Mo HZ, Hu LB, Li YQ, Chen J, Yang LF (2014) The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa. PLoS One 9(10):e110901

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary P, Jain V (2018) Effect of post-harvest treatments of selenium on physicochemical quality in guava (Psidium guajava L.) fruit. Horticult Int J 2(2):41–44

    Article  Google Scholar 

  • D’Amato R, Salt L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D (2020) Current knowledge on selenium biofortification to improve the nutraceutical profile of food: A comprehensive review. J Agric Food Chem 68(14):4075–4097

    Article  PubMed  PubMed Central  Google Scholar 

  • Dall’Acqua S, Ertani A, Pilon-Smits EA, Fabrega-Prats M, Schiavon M (2019) Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca sativa mill. and Diplotaxis tenuifolia) grown in hydroponics. Plants 8(3):68

    Article  PubMed Central  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Reg 33(3):671–682

    Article  CAS  Google Scholar 

  • Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA (2019) Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol Biochem 137:144–153

    Article  CAS  PubMed  Google Scholar 

  • El-Kinany RG, Brengi SH, Nassar AK, El-Batal A (2019) Enhancement of plant growth, chemical composition and secondary metabolites of essential oil of salt-stressed coriander (Coriandrum sativum L.) plants using selenium, nano-selenium, and glycine betaine. Sci J Flower Ornam Plant 6:151–173

    Article  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Ramady H, Faizy SED, Abdalla N, Taha H, Domokos-Szabolcsy É, Fari M, Elsakhawy T, Omara AE, Shalaby T, Bayoumi Y, Shehata S, Geilfus CM, Brevik EC (2020) Selenium and nano-selenium biofortification for human health: Opportunities and challenges. Soil Syst 4(3):57

    Article  CAS  Google Scholar 

  • Eurola M, Ekholm P, Ylinen M, Koivistoinen P, Varo P (1989) Effects of selenium fertilization on the selenium content of selected Finnish fruits and vegetables. Acta Agric Scand 39(3):345–350

    Article  CAS  Google Scholar 

  • Feng RW, Wei CY, Tu SX, Wu FC (2009) Effects of Se on the essential elements uptake in Pteris vittata L. Plant and Soil 325:123–132

    Article  CAS  Google Scholar 

  • Feng RW, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Feng RW, Wang LZ, Yang JG, Zhao PP, Zhu YM, Li YP, Yu YS, Liu H, Rensing C, Wu ZY, Ni RX, Zheng SA (2021) Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mater 402:123570

    Article  CAS  PubMed  Google Scholar 

  • Filek M, Gzyl-Malcher B, Zembala M, Bednarska E, Laggner P, Kriechbaum M (2010) Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J Plant Physiol 167:28–33

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  • García Márquez V, Morelos Moreno Á, Benavides Mendoza A, Medrano Macías J (2020) Ionic selenium and nanoselenium as biofortifiers and stimulators of plant metabolism. Agronomy 10(9):1399

    Article  Google Scholar 

  • Germ M, Stibilj V, Osvald J, Kreft I (2007) Effect of selenium foliar application on chicory (Cichorium intybus L.). J Agric Food Chem 55:795–798

    Article  CAS  PubMed  Google Scholar 

  • González-Morales S, Pérez-Labrada F, García-Enciso EL, Leija-Martínez P, Medrano-Macías J, Dávila-Rangel IE, Juárez-Maldonado A, Rivas-Martínez EN, Benavides-Mendoza A (2017) Selenium and sulfur to produce allium functional crops. Molecules 22:558

    Article  PubMed Central  Google Scholar 

  • Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Han D, Tu S, Dai Z, Huang W, Jia W, Xu Z, Shao H (2022) Comparison of selenite and selenate in alleviation of drought stress in Nicotiana tabacum L. Chemosphere 287:132136

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–663

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Selenium in plants: Boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2008a) Effect of selenium on selected macronutrients in maize plants. J Elem 13(4):513–519

    Google Scholar 

  • Hawrylak-Nowak B (2008b) Enhanced selenium content in sweet basil (Ocimum basilicum L.) by foliar fertilization. Veg Crops Res Bull 69(1):63–72

    Google Scholar 

  • Hawrylak-Nowak B (2008c) Changes in anthocyanin content as indicator of maize sensitivity to selenium. J Plant Nutr 31(7):1232–1242

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132(1–3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70(2):149–157

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2015) Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biol Cracov Bot 57(2):49–45

    CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek-Gawron R (2020) Difference between selenite and selenate in the regulation of growth and physiological parameters of nickel-exposed lettuce. Biology 9(12):465

    Article  CAS  PubMed Central  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138(1–3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41

    Article  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R, Woch W, Hasanuzzaman M (2018a) Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiol Biochem 127:446–456

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Hasanuzzaman M, Matraszek-Gawron R (2018b) Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore, pp 269–295

    Chapter  Google Scholar 

  • Hondal RJ, Marino SM, Gladyshev VN (2012) Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid Redox Signal 18:1675–1689

    Article  PubMed  Google Scholar 

  • Huang C, Ying H, Yang X, Gao Y, Li T, Wu B, Ren M, Zhang Z, Ding J, Gao J, Wen D, Ye X, Liu L, Wang H, Sun G, Zou Y, Chen N, Wang L (2021) The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discov 7:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Sharma S, Kaur S, Nayyar H (2014) Selenium in agriculture: a nutrient or contaminant for crops? Arch Agron Soil Sci 60(12):1593–1624

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton, pp 373–377

    Google Scholar 

  • Kolbert Z, Lehotai N, Molnár Á, Feigl G (2016) “The roots” of selenium toxicity: a new concept. Plant Signal Behav 11:e1241935

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolbert Z, Molnár Á, Feigl G, Van Hoewyk D (2019) Plant selenium toxicity: proteome in the crosshairs. J Plant Physiol 232:291–300

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VV, Kholodova VP, Kuznetsov VV, Yagodin BA (2003) Selenium regulates the water status of plants exposed to drought. Dokl Biol Sci 390:266–268

    Article  CAS  PubMed  Google Scholar 

  • Łabanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284

    Article  PubMed  Google Scholar 

  • Lanza MGDB, Silva VM, Montanha GS, Lavres J, de Carvalho HWP, dos Reis AR (2021) Assessment of selenium spatial distribution using μ-XFR in cowpea (Vigna unguiculata (L.) Walp.) plants: Integration of physiological and biochemical responses. Ecotoxicol Environ Saf 207:111216

    Article  CAS  PubMed  Google Scholar 

  • Lazard M, Dauplais M, Blanquet S, Plateau P (2017) Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 8(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Lehotai N, Kolbert Z, Pető A, Feigl G, Ördög A, Kumar D, Tari I, Erdei L (2012) Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687

    Article  CAS  PubMed  Google Scholar 

  • Li D, An Q, Wu Y, Li JQ, Pan C (2020) Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the α-linolenic acid pathway. ACS Sustain Chem Eng 8:10502–10510

    Article  CAS  Google Scholar 

  • Lima LW, Pilon-Smits EA, Schiavon M (2018) Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. Biochim Biophys Acta, Gen Subj 1862(11):2343–2353

    Article  CAS  Google Scholar 

  • Łukaszewicz S, Politycka B, Smoleń S (2019) Accumulation of selected macronutrients and tolerance towards selenium of garden pea treated with selenite and selenate. J Elem 24(1):245–256

    Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain. Is there sufficient genotypic variation to use in breeding? Plant and Soil 269:369–380

    Article  CAS  Google Scholar 

  • Malagoli M, Schiavon M, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Malheiros RS, Gonçalves FC, Brito FA, Zsögön A, Ribeiro DM (2020) Selenomethionine induces oxidative stress and modifies growth in rice (Oryza sativa L.) seedlings through effects on hormone biosynthesis and primary metabolism. Ecotoxicol Environ Saf 189:109942

    Article  CAS  PubMed  Google Scholar 

  • Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P et al (2017) Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Ogra Y, Ogihara Y, Anan Y (2017) Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics 9(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Oldfield JE (2002) Selenium Word Atlas: updated edition. Selenium-Tellurium Development Association, Grimbergen

    Google Scholar 

  • Oraghi Ardebili Z, Oraghi Ardebili N, Jalili S, Safiallah S (2015) The modified qualities of basil plants by selenium and/or ascorbic acid. Turk J Bot 39(3):401–407

    Article  Google Scholar 

  • Pannico A, El Nakhel C, Kyriacou MC, Giordano M, Stazi SR, De Pascale S, Rouphael Y (2019) Combating micronutrient deficiency and enhancing food functional quality through selenium fortification of select lettuce genotypes grown in a closed soilless system. Front Plant Sci 10:1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant and Soil 249:157–165

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH (2019) On the ecology of selenium accumulation in plants. Plan Theory 8(7):197

    CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium metabolism in plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs 17. Springer, Verlag, Berlin Heidelberg, pp 225–241

    Chapter  Google Scholar 

  • Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22(6):933

    Article  PubMed Central  Google Scholar 

  • Puccinelli M, Pezzarossa B, Rosellini I, Malorgio F (2020) Selenium enrichment enhances the quality and shelf life of basil leaves. Plan Theory 9(6):801

    CAS  Google Scholar 

  • Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D (2021) Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol Plant 171(4):882–895

    Article  CAS  PubMed  Google Scholar 

  • Regni L, Palmerini CA, Del Pino AM, Businelli D, D’Amato R, Mairech H, Marmottini F, Micheli M, Pacheco PH, Proietti P (2021) Effects of selenium supplementation on olive under salt stress conditions. Sci Hortic 278:109866

    Article  CAS  Google Scholar 

  • Ríos JJ, Blasco B, Cervilla LM, Rubio-Wilhelmi MM, Ruiz JM, Romero L (2008a) Regulation of sulphur assimilation in lettuce plants in the presence of selenium. Plant Growth Regul 56(1):43

    Article  Google Scholar 

  • Ríos JJ, Rosales MA, Blasco B, Cervilla LM, Romero L, Ruiz JM (2008b) Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci Hortic 116(3):248–255

    Article  Google Scholar 

  • Ríos JJ, Blasco B, Leyva R, Sanchez-Rodriguez E, Rubio-Wilhelmi MM, Romero L, Ruiz JM (2013) Nutritional balance changes in lettuce plant grown under different doses and forms of selenium. J Plant Nutr 36(9):1344–1354

    Article  Google Scholar 

  • Sabatino L, Ntatsi G, Iapichino G, D’Anna F, De Pasquale C (2019) Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy 9(4):207

    Article  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Dall’acqua S, Mietto A, Pilon-Smits EAH, Sambo P, Masi A, Malagoli M (2013) Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J Agric Food Chem 61:10542–10554

    Google Scholar 

  • Schiavon M, Nardi S, Dalla Vecchia F, Ertani A (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant and Soil 453:245–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319

    Article  Google Scholar 

  • Seppänen MM, Ebrahimi N, Kontturi J, Hartikainen H, Heras IL, Cámara C, Madrid Y (2018) Dynamics of selenium uptake and metabolism of organic selenium species in the leaves and seeds of Brassica napus L. Agric Food Sci 27(1):38–49

    Article  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernández-Zapata JC, Martínez Nicolás JJ, Garcia-Sanchez F (2019) Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol Environ Saf 180(30):588–599

    Article  CAS  PubMed  Google Scholar 

  • Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, dos Santos FLM, Putti FF, Junior EF, White PJ, Broadley MR, Carvalho HWPD, Reis ARD (2018) Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot 150:172–182

    Article  CAS  Google Scholar 

  • Spallholz JE (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci 10(2–3):260–270

    CAS  PubMed  Google Scholar 

  • Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, Mowat H, Norman K, Scott P, Tucker M, White PJ, McGrath SP, Zhao FJ (2010) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil 332(1–2):31–40

    Article  CAS  Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front Plant Sci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamaoki M, Freeman JL, Marquès L, Pilon-Smits EAH (2008) New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signal Behav 3(10):865–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavakoli S, Enteshari S, Yousefifard M (2020) Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in Melissa officinalis. Iran J Plant Physiol 10(2):3125–3134

    Google Scholar 

  • Terry N, Zayed M, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L (2018) Effects of selenium supplementation on glucosinolate biosynthesis in broccoli. J Agric Food Chem 66(30):8036–8044

    Article  CAS  PubMed  Google Scholar 

  • Tohge T, Fernie AR (2017) An overview of compounds derived from the shikimate and phenylpropanoid pathways and their medicinal importance. Mini Rev Med Chem 17(12):1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Ulhassan Z, Gill RA, Ali S, Mwamba TM, Ali B, Wang J, Huang Q, Azizd R, Zhou W (2019) Dual behavior of selenium: Insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere 225:329–341

    Article  CAS  PubMed  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112(6):965–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D (2018) Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. Plant Signal Behav 13(4):e1171451

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallenberg M, Olm E, Hebert C, Björnstedt M, Fernandes AP (2010) Selenium compounds are substrates for glutaredoxins: a novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. Biochem J 429:85–93

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2018) Selenium metabolism in plants. Biochim Biophys Acta, Gen Subj 1862(11):2333–2342

    Article  CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55(404):1927–1937

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woch W, Hawrylak-Nowak B (2019) Selected antioxidant properties of alfalfa, radish, and white mustard sprouts biofortified with selenium. Acta Agrobot 72(2):1768

    Article  Google Scholar 

  • Wrobel K, Guerrero Esperanza M, Yanez Barrientos E, Corrales Escobosa AR, Wrobel K (2020) Different approaches in metabolomic analysis of plants exposed to selenium: a comprehensive review. Acta Physiol Plant 42(7):125

    Article  CAS  Google Scholar 

  • Yang H, Jia X (2012) Safety evaluation of Se-methylselenocysteine as nutritional selenium supplement: acute toxicity, genotoxicity and subchronic toxicity. Regul Toxicol Pharmacol 70(3):720–727

    Article  Google Scholar 

  • Yu Y, Fu P, Huang Q, Zhang J, Li H (2019) Accumulation, subcellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages. Chemosphere 216:331–340

    Article  CAS  PubMed  Google Scholar 

  • Zayed AM, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zhang Y, Gladyshev V (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109(10):4828–4861

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Luo J (2018) Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 8:2789

    Google Scholar 

  • Zhu Z, Chen Y, Zhang X, Li M (2016) Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci Hortic 198:304–310

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X (2018) Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem 252:9–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hawrylak-Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawrylak-Nowak, B. (2022). Biological Activity of Selenium in Plants: Physiological and Biochemical Mechanisms of Phytotoxicity and Tolerance. In: Hossain, M.A., Ahammed, G.J., Kolbert, Z., El-Ramady, H., Islam, T., Schiavon, M. (eds) Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement. Sustainable Plant Nutrition in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-031-07063-1_17

Download citation

Publish with us

Policies and ethics