Skip to main content

Perfect Matchings with Crossings

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Abstract

For sets of \(n = 2m\) points in general position in the plane we consider straight-line drawings of perfect matchings on them. It is well known that such sets admit at least \(C_m\) different plane perfect matchings, where \(C_m\) is the m-th Catalan number. Generalizing this result we are interested in the number of drawings of perfect matchings which have k crossings. We show the following results. (1) For every \(k\le \frac{1}{64}n^2-O(n \sqrt{n})\), any set of n points, n sufficiently large, admits a perfect matching with exactly k crossings. (2) There exist sets of n points where every perfect matching has fewer than \(\frac{5}{72}n^2\) crossings. (3) The number of perfect matchings with at most k crossings is superexponential in n if k is superlinear in n. (4) Point sets in convex position minimize the number of perfect matchings with at most k crossings for \(k=0,1,2\), and maximize the number of perfect matchings with \(\left( {\begin{array}{c}n/2\\ 2\end{array}}\right) \) crossings and with \({\left( {\begin{array}{c}n/2\\ 2\end{array}}\right) }\!-\!1\) crossings.

Research on this work has been initiated at the 16th European Research Week on Geometric Graphs which was held from November 18 to 22, 2019, near Strobl (Austria). We thank all participants for the good atmosphere as well as for discussions on the topic. Further, we thank Clemens Huemer for bringing this problem to our attention in the course of a meeting of the H2020-MSCA-RISE project 73499 - CONNECT. O. A. and R. P. supported by FWF grant W1230. R. M. partially supported by CONACYT(Mexico) grant 253261. P. S. supported by ERC Grant ERC StG 716424-CASe. D. P., I. P., and B. V. supported by FWF Project I 3340-N35. Some results of this work have been presented at the “Computational Geometry: Young Researchers Forum” in 2021 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications. Order 19, 265–281 (2002). https://doi.org/10.1023/A:1021231927255

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., et al.: Perfect matchings with crossings. In: Abstracts of the Computational Geometry: Young Researchers Forum, pp. 24–27 (2021). https://cse.buffalo.edu/socg21/files/YRF-Booklet.pdf#page=24

  3. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs Comb. 23(1), 67–84 (2007). https://doi.org/10.1007/s00373-007-0704-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Asinowski, A.: The number of non-crossing perfect plane matchings is minimized (almost) only by point sets in convex position (2015). arXiv preprint arXiv:1502.05332

  5. Asinowski, A., Rote, G.: Point sets with many non-crossing perfect matchings. Comput. Geom. 68, 7–33 (2018). https://doi.org/10.1016/j.comgeo.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. Discrete Comput. Geom. 50(3), 771–783 (2013). https://doi.org/10.1007/s00454-013-9538-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Eppstein, D.: Counting polygon triangulations is hard. Discrete Comput. Geom. 64(4), 1210–1234 (2020). https://doi.org/10.1007/s00454-020-00251-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Flajolet, P., Noy, M.: Analytic combinatorics of chord diagrams. In: Krob, D., Mikhalev, A.A., Mikhalev, A.V. (eds.) Formal Power Series and Algebraic Combinatorics, pp. 191–201. Springer, Heidelberg. (2000). https://doi.org/10.1007/978-3-662-04166-6_17

    Chapter  MATH  Google Scholar 

  9. García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of \(K_n\). Comput. Geom. 16(4), 211–221 (2000). https://doi.org/10.1016/S0925-7721(00)00010-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Pach, J., Solymosi, J.: Halving lines and perfect cross-matchings. Adv. Discrete Comput. Geom. 223, 245–249 (1999)

    Article  MathSciNet  Google Scholar 

  11. Pilaud, V., Rue, J.: Analytic combinatorics of chord and hyperchord diagrams with \(k\) crossings. Adv. Appl. Math. 57, 60–100 (2014). https://doi.org/10.1016/j.aam.2014.04.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Riordan, J.: The distribution of crossings of chords joining pairs of \(2n\) points on a circle. Math. Comput. 29(129), 215–222 (1975). https://doi.org/10.1090/S0025-5718-1975-0366686-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006). https://doi.org/10.1137/050636036

    Article  MathSciNet  MATH  Google Scholar 

  14. You, C.: Improving Sharir and Welzl’s bound on crossing-free matchings through solving a stronger recurrence (2017). arXiv preprint arXiv:1701.05909

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosna Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichholzer, O. et al. (2022). Perfect Matchings with Crossings. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics