Skip to main content

Identification of Parkinson’s Disease from Speech Using CNNs and Formant Measures

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that severely impacts the motor capabilities of patients. Dysarthria is one of the symptoms that can be accurately characterized using speech analysis, tracking the deterioration associated with the evolution of the disease. Through the present work the use of machine learning-based technologies, more specifically the Convolutional Neural Networks (CNNs) and the direct application of formant features extracted form sustained phonations of vowel /a/ are proposed. The main goal is to investigate the effects of the speech articulatory movements affected by hypokinetic dysarthria in Parkinson’s Disease as this would allow to use speech as a reliable monitoring tool. The study employs voice recording of 593 subjects form the Patient Voice Analysis dataset (PVA) and 687 health controls from the Saarbrücken Voice Database (SVD). The k-fold cross-validation trials provided the best results when the length of the utterances is limited to 2 s, achieving a sensibility of 0.96 and a specificity of 0.99.

This research received funding from grants TEC2016-77791-C4-4-R (Ministry of Economic Affairs and Competitiveness of Spain), and Teca-Park-MonParLoc FGCSICCENIE 0348-CIE-6-E (InterReg Programme). PVA datasets were generated through collaboration between Sage Bionetworks, PatientsLikeMe and Dr. Max Little as part of the Patient Voice Analysis study (PVA). They were obtained through Synapse ID [syn2321745].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008). https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  2. de Rijk, M.C., et al.: Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurol. Diseases Elderly Res. Group Neurol. 54(11 Suppl. 5), S21–S23 (2000). PMID: 10854357. https://doi.org/10.1136/jnnp.62.1.10

  3. Ray Dorsey, E., et al.: Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 17(11), 939–953 (2018). https://doi.org/10.1016/S1474-4422(18)30295-3

  4. Skodda, S., Grönheit, W., Mancinelli, N., Schlegel, U.: Progression of voice and speech impairment in the course of Parkinson’s disease: a longitudinal study. Parkinson’s Disease 2013, 389195 (2013). https://doi.org/10.1155/2013/389195

  5. New, A.B., et al.: The intrinsic resting state voice network in Parkinson’s disease. Hum. Brain Mapp. 36, 1951–1962 (2015). https://doi.org/10.1002/hbm.22748

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sapir, S.: Multiple factors are involved in the dysarthria associated with Parkinson’s disease: a review with implications for clinical practice and research. J. Speech Lang. Hear. Res. 57, 1330–1343 (2014). https://doi.org/10.1044/2014JSLHR-S-13-0039

    Article  PubMed  Google Scholar 

  7. Sureshbabu, S.: Clinical speech impairment in Parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy. Neurol. India 56(2), 122–126 (2008). https://doi.org/10.4103/0028-3886.41987

    Article  Google Scholar 

  8. Kent, R.D., et al.: Acoustic studies of dysarthric speech: methods, progress, and potential. J. Commun. Disorders 32(3), 141–186 (1999). https://doi.org/10.1016/s0021-9924(99)00004-0

    Article  CAS  Google Scholar 

  9. Godino-Llorente, J.I., Moro-Velázquez, L., Gómez-García, J.A., Choi, J.-Y., Dehak, N., Shattuck-Hufnagel, S.: Approaches to evaluate parkinsonian speech using artificial models. In: Godino-Llorente, J.I. (ed.) AAPS 2019. CCIS, vol. 1295, pp. 77–99. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65654-6_5

    Chapter  Google Scholar 

  10. Godino-Llorente, J.I., et al.: Towards the identification of idiopathic Parkinson’s disease from the speech. New articulatory kinetic biomarkers. PLoS ONE 12(12) (2017). https://doi.org/10.1371/journal.pone.0189583

  11. Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56, 1015–1022 (2009). https://doi.org/10.1109/TBME.2008.2005954

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moro-Velázquez, L., et al.: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson’s Disease. Appl. Soft Comput. 62, 649–666 (2018). https://doi.org/10.1016/j.asoc.2017.11.001

    Article  Google Scholar 

  13. Moro-Velazquez, L., Villalba, J., Dehak, N.: Using x-vectors to automatically detect Parkinson’s disease from speech. In: Proceedings of ICASSP 2020, pp. 1155–1159. https://doi.org/10.1109/ICASSP40776.2020.9053770

  14. Berus, L., Klancnik, S., Brezocnik, M., Ficko, M.: Classifying Parkinson’s disease based on acoustic measures using artificial neural networks. Sensors (2019). https://doi.org/10.3390/s19010016

    Article  Google Scholar 

  15. Vaiciukynas, E., Gelzinis, A., Verikas, A., Bacauskiene, M.: Parkinson’s disease detection from speech using convolutional neural networks. In: Guidi, B., Ricci, L., Calafate, C., Gaggi, O., Marquez-Barja, J. (eds.) GOODTECHS 2017. LNICST, vol. 233, pp. 206–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76111-4_21

    Chapter  Google Scholar 

  16. Rios-Urrego, C.D., Vásquez-Correa, J.C., Orozco-Arroyave, J.R., Nöth, E.: Transfer learning to detect Parkinson’s disease from speech in different languages using convolutional neural networks with layer freezing. In: Sojka, P., Kopeček, I., Pala, K., Horák, A. (eds.) TSD 2020. LNCS (LNAI), vol. 12284, pp. 331–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58323-1_36

    Chapter  Google Scholar 

  17. Bhati, S., Moro-Velázquez, L., Villalba, J., Dehak, N.: LSTM Siamese network for Parkinson’s disease detection from speech. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1–5 (2019). https://doi.org/10.1109/GlobalSIP45357.2019.8969430

  18. Orozco-Arroyave, J.R., et al.: Automatic detection of Parkinson’s disease in running speech spoken in three different languages. J. Acoust. Soc. Am. 139(1), 481–500 (2016). https://doi.org/10.1121/1.4939739

  19. Meghraoui, D., Boudraa, B., Merazi-Meksen, T., Gómez-Vilda, P.: A novel pre-processing technique in pathologic voice detection: application to Parkinson’s disease phonation. Biomed. Sig. Process. Control 68 (2021). https://doi.org/10.1016/j.bspc.2021.102604

  20. Arora, S., Tsanas, A.: Assessing Parkinson’s disease at scale using telephone-recorded speech: insights from the Parkinson’s voice initiative. Diagnostics. 11(10), 1892 (2021). https://doi.org/10.3390/diagnostics11101892

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hireš, M., et al.: Convolutional neural network ensemble for Parkinson’s disease detection from voice recordings. Comput. Biol. Med. 141, 105021 (2022). https://doi.org/10.1016/j.compbiomed.2021.105021

  22. Gómez, A., et al.: Acoustic to kinematic projection in Parkinson’s disease dysarthria. Biomed. Sig. Process. Control 66, 102422 (2021). https://doi.org/10.1016/j.bspc.2021.102422

  23. Tsanas, A., et al.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2012). https://doi.org/10.1109/TBME.2012.2183367

  24. Putzer, M., Barry, W.: Saarbrucken voice database, Institute of Phonetics, University of Saarland. http://www.stimmdatenbank.coli.uni-saarland.de/. Accessed 15 Feb 2022

  25. Chicco, D., Tötsch, N., Jurman, G.: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 14, 13 (2021). https://doi.org/10.1186/s13040-021-00244-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Álvarez-Marquina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Álvarez-Marquina, A., Gómez-Rodellar, A., Gómez-Vilda, P., Palacios-Alonso, D., Díaz-Pérez, F. (2022). Identification of Parkinson’s Disease from Speech Using CNNs and Formant Measures. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics