Skip to main content

Modeling Tumour Growth with a Modulated Game of Life Cellular Automaton Under Global Coupling

  • Chapter
  • First Online:
Cancer, Complexity, Computation

Abstract

We propose a coupled map lattice that simulates the Gompertz tumour growth model used in cancer diagnosis and is able to reproduce the long-time parameter correlations that have been found in previous studies. The coupled map lattice is a modulated Game of Life cellular automaton model that includes only two free parameters. Parameter \(\gamma \) governs the strength of a global coupling of the cells due to the confinement pressure. Parameter \(\kappa \) governs the strength of the intercellular coupling which modulates the local dynamic rules of Conway’s Game of Life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraus, M., Wolf, B.: Emergence of self-organization in tumor cells: relevance for diagnosis and therapy. Tumor Biol. 14, 338–353 (1993). https://doi.org/10.1159/000217849

    Article  Google Scholar 

  2. Brunton, G.F., Wheldon, T.E.: Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements. Cell Tissue Kinet. 10, 591–594 (1977). https://doi.org/10.1111/j.1365-2184.1977.tb00316.x

    Article  Google Scholar 

  3. Steel, G.G.: Growth Kinetics of Tumours. Clarendon Press, Oxford (1977)

    Google Scholar 

  4. Klein, C.A.: Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 9, 302–312 (2009). https://doi.org/10.1038/nrc2627

    Article  Google Scholar 

  5. Norton, L., Simon, R., Brereton, H.D., Bogden, A.E.: Predicting the course of Gompertzian growth. Nature 264, 542–545 (1976). https://doi.org/10.1038/264542a0

    Article  Google Scholar 

  6. Norton, L.: A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988)

    Google Scholar 

  7. Benzekry, S., Lamont, C., Beheshti, A., Tracz, A., Ebos, J.M.L., et al.: Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10(8), e1003800 (2014). https://doi.org/10.1371/journal.pcbi.1003800

    Article  Google Scholar 

  8. Qi, A.-S., Zheng, X., Du, C.-Y., An, B.-S.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161, 1–12 (1993). https://doi.org/10.1006/jtbi.1993.1035

    Article  Google Scholar 

  9. Kansal, A.R., Torquato, S., Harsh, G.R., IV., Chiocca, E.A., Deisboeck, T.S.: Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J. Theor. Biol. 203, 367–382 (2000). https://doi.org/10.1006/jtbi.2000.2000

    Article  Google Scholar 

  10. García-Morales, V., Manzanares, J.A., Mafé, S.: Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states. Phys. Rev. E 95, 042324 (2017). https://doi.org/10.1103/physreve.95.042324

    Article  MathSciNet  Google Scholar 

  11. Garcia-Morales, V.: From deterministic cellular automata to coupled map lattices. J. Phys. A.: Math. Theor. 49, 295101 (2016). https://doi.org/10.1088/1751-8113/49/29/295101

    Article  MathSciNet  MATH  Google Scholar 

  12. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Wining Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982)

    MATH  Google Scholar 

  13. Adamatzky, A. (ed.): Game of Life Cellular Automata. Springer, New York (2010)

    MATH  Google Scholar 

  14. Adachi, S., Peper, F., Lee, J.: The Game of Life at finite temperature. Phys. D 198, 182 (2004). https://doi.org/10.1016/j.physd.2004.04.010

    Article  Google Scholar 

  15. Chua, L.O., Roska, T., Venetianer, P.L.: The CNN is universal as the Turing machine. IEEE Trans. Circuits Syst. I 40, 289 (1993). https://doi.org/10.1109/81.224308

    Article  MathSciNet  MATH  Google Scholar 

  16. Pazienza, G.E., Gomez-Ramirez, E., Vilasi’s-Cardona, X.: Polynomial cellular neural networks for implementing the Game of Life. In: Marques de Sá, J., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) Proceedings of ICANN 2007. LNCS, vol. 4668, pp. 914–923. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-74690-4-9

  17. Mertens, F., Imbihl, R., Mikhailov, A.: Breakdown of global coupling in oscillatory chemical reactions. J. Chem. Phys. 99, 8668 (1993). https://doi.org/10.1063/1.465590

    Article  Google Scholar 

  18. García-Morales, V.: Universal map for cellular automata. Phys. Lett. A 376, 2645 (2012). https://doi.org/10.1016/j.physleta.2012.07.021

    Article  MathSciNet  MATH  Google Scholar 

  19. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications and Analysis. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir García-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Morales, V., Manzanares, J.A., Cervera, J. (2022). Modeling Tumour Growth with a Modulated Game of Life Cellular Automaton Under Global Coupling. In: Balaz, I., Adamatzky, A. (eds) Cancer, Complexity, Computation. Emergence, Complexity and Computation, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-031-04379-6_5

Download citation

Publish with us

Policies and ethics